Position: x = 18t y = 4t - 4.9t²
First derivative: x' = 18 y' = 4 - 9.8t
Second derivative: x'' = 0 y'' = - 9.8
Position vector: P = (18t) i + (4t - 4.9t²) j
Velocity vector: V = (18) i + (4 - 9.8t) j
Acceleration vector A = (- 9.8) j
I think it is there is no change in the energy's sunlight
Answer:

Explanation:
we know that



as we see that 
relative error
Where X_1 IS HEIGHT OF ROCK
IS THE HEIGHT OF ROAD
= uncertainity in measuring distance

Putting all value to get uncertainity in angle

solving for
we get

Uhh it is used to detirmine heat
Answer:
The value is 
Explanation:
From the question we are told that
The initial speed is 
Generally the total energy possessed by the space probe when on earth is mathematically represented as

Here
is the kinetic energy of the space probe due to its initial speed which is mathematically represented as
=>
=> 
And
is the kinetic energy that the space probe requires to escape the Earth's gravitational pull , this is mathematically represented as

Here
is the escape velocity from earth which has a value 
=> 
=> 
Generally given that at a position that is very far from the earth that the is Zero, the kinetic energy at that position is mathematically represented as

Generally from the law energy conservation we have that
So

=> 
=> 
=> 