Answer:
The moon's orbit draws the oceans to it, which triggers ocean tides. Force produces stars and planets by gathering the mass from which it exists.
Explanation:
The moon's orbit draws the oceans to it, which triggers ocean tides. Force produces stars and planets by gathering the mass from which it exists.
Answer is above
<em><u>Hope this helps.</u></em>
The moon does not have its own light.
Answer:
x(t)=0.337sin((5.929t)
Explanation:
A frictionless spring with a 3-kg mass can be held stretched 1.6 meters beyond its natural length by a force of 90 newtons. If the spring begins at its equilibrium position, but a push gives it an initial velocity of 2 m/sec, find the position of the mass after t seconds.
Solution. Let x(t) denote the position of the mass at time t. Then x satisfies the differential equation
Definition of parameters
m=mass 3kg
k=force constant
e=extension ,m
ω =angular frequency
k=90/1.6=56.25N/m
ω^2=k/m= 56.25/1.6
ω^2=35.15625
ω=5.929
General solution will be
differentiating x(t)
dx(t)=-5.929c1sin(5.929t)+5.929c2cos(5.929t)
when x(0)=0, gives c1=0
dx(t0)=2m/s gives c2=0.337
Therefore, the position of the mass after t seconds is
x(t)=0.337sin((5.929t)
Hi there!
Recall the equation for weight.

W = Weight (N)
M = Mass (kg)
g = acceleration due to gravity (m/s²)
The weight of an object depends upon its MASS and the strength of the GRAVITATIONAL field. We can solve for weight:
