Answer:
Static, sliding, and rolling friction occur between solid surfaces. Static friction is strongest, followed by sliding friction, and then rolling friction, which is weakest. Fluid friction occurs in fluids, which are liquids or gases.
Explanation:
Answer:
F = GMmx/[√(a² + x²)]³
Explanation:
The force dF on the mass element dm of the ring due to the sphere of mass, m at a distance L from the mass element is
dF = GmdM/L²
Since the ring is symmetrical, the vertical components of this force cancel out leaving the horizontal components to add.
So, the horizontal components add from two symmetrically opposite mass elements dM,
Thus, the horizontal component of the force is
dF' = dFcosФ where Ф is the angle between L and the x axis
dF' = GmdMcosФ/L²
L² = a² + x² where a = radius of ring and x = distance of axis of ring from sphere.
L = √(a² + x²)
cosФ = x/L
dF' = GmdMcosФ/L²
dF' = GmdMx/L³
dF' = GmdMx/[√(a² + x²)]³
Integrating both sides we have
∫dF' = ∫GmdMx/[√(a² + x²)]³
∫dF' = Gm∫dMx/[√(a² + x²)]³ ∫dM = M
F = GmMx/[√(a² + x²)]³
F = GMmx/[√(a² + x²)]³
So, the force due to the sphere of mass m is
F = GMmx/[√(a² + x²)]³
Answer:
It reveals that light is a wave
Explanation:
Diffraction is the property of a wave in which there is a bending of the wave about the corners of an obstacle or aperture into the geometrical shadow of the obstacle or aperture.
This simply implies that a wave bends or spreads out when it passes through openings. Since the light diffracts through small slits and diffraction has been shown to occur in water waves and sound waves, this property of diffraction can only be characteristic of a wave and thus, this evidence reveals that light is a wave.