Answer:
m = 35.98 Kg ≈ 36 Kg
Explanation:
I₀ = 125 kg·m²
R₁ = 1.50 m
ωi = 0.600 rad/s
R₂ = 0.905 m
ωf = 0.800 rad/s
m = ?
We can apply The law of conservation of angular momentum as follows:
Linitial = Lfinal
⇒ Ii*ωi = If*ωf <em>(I)</em>
where
Ii = I₀ + m*R₁² = 125 + m*(1.50)² = 125 + 2.25*m
If = I₀ + m*R₂² = 125 + m*(0.905)² = 125 + 0.819025*m
Now, we using the equation <em>(I) </em>we have
(125 + 2.25*m)*0.600 = (125 + 0.819025*m)*0.800
⇒ m = 35.98 Kg ≈ 36 Kg
You have not provided the diagram, therefore, I cannot provide an exact answer.
However, I will try to help by explaining how to solve this problem.
When light moves from air to glass:1- part of the light is reflected back into the air where the angle of incidence is equal to the angle of reflection
2- part of the light enters the water and refracts. The angle of refraction can be calculated using Snell's law.
In a diagram, the reflected ray would be the one getting back into air while the refracted ray would be the one entering the water.
You can check the attached diagram for further illustrations.
Hope this helps :)
Answer:
Explanation:
Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed. <em>FALSE. </em>The specific lines are obseved because of the energy level transition of an electron in an specific level to another level of energy.
The energies of atoms are not quantized. <em>FALSE. </em>The energies of the atoms are in specific levels.
When an electron moves from one energy level to another during absorption, a specific wavelength of light (with specific energy) is emitted. <em>FALSE. </em>During absorption, a specific wavelength of light is absorbed, not emmited.
Electrons are not allowed "in between" quantized energy levels, and, thus, only specific lines are observed. <em>TRUE. </em>Again, you can observe just the transition due the change of energy of an electron in the quantized energy level
When an electron moves from one energy level to another during emission, a specific wavelength of light (with specific energy) is emitted. <em>TRUE. </em>The electron decreases its energy releasing a specific wavelength of light.
The energies of atoms are quantized. <em>TRUE. </em>In fact, the energy of all subatomic, atomic, and molecular particles is quantized.
1.5 / 0.5 = 3 I believe this is the right answer
Answer:
If all the heat energy contained in a body is removed and changes in its temperature is described below in detail.
Explanation:
It moves from a body at a greater temperature to a body at a cheaper temperature. All element survives as solids, liquids, or gases. The material can transfer from one station to another if warmed or cooled. When heat is provided to a body its heat increases: When a physical body, hard, liquid. When heat is provided is stopped to a body its temperature decline.