Answer:
(A) 
(B) 
Explanation:
Given:
- diameter of the cylinder,

- mass of piston sealing on the top,

- initial temperature of the piston,

- initial height of piston,

- atmospheric pressure on the piston,

(A)
<u>Initial pressure of gas is the pressure balanced by the weight of piston:</u>



<em>Which is gauge pressure because it is measured with respect to the atmospheric pressure.</em>
(B)
Given:
- Final temperature,

<u>Now, volume of air initially in the cylinder:</u>



Using gas law:
........................................(1)
<em>∵In every condition of equilibrium the gas pressure will be balanced by the weight of the piston so it is an </em><em>isobaric transition</em><em>.</em>
∴
<u>Hence eq. (1) is reduced to:</u>

putting respective values:


Answer:
Probably the more correct version of the story is that Newton, upon observing an apple fall from a tree, began to think along the following lines: The apple is accelerated, since its velocity changes from zero as it is hanging on the tree and moves toward the ground. Thus, by Newton's 2nd Law there must be a force that acts on the apple to cause this acceleration. Let's call this force "gravity", and the associated acceleration the "acceleration due to gravity". Then imagine the apple tree is twice as high. Again, we expect the apple to be accelerated toward the ground, so this suggests that this force that we call gravity reaches to the top of the tallest apple tree.
It’s D. An enlargement (hope this helps!)
Answer:
No
Explanation:
Electric potential is the work done to bring a unit of charge (1 C) from infinity to a point inside an electric field.
Electric potential energy of a charge q is the energy required to keep it in an electric potential V. Electric potential energy is given by,
U = qV
Hence even if the two charges are on an equipotential surface (surface where the potential is the same at all points), the potenial energy will be different if the magnitude or nature of the charges are different.