Answer:
These two copies of the gene contained in your chromosomes influence the way your cells work. The two alleles in a gene pair are inherited, one from each parent. Alleles interact with each other in different ways. These are called inheritance patterns.
Explanation:
hope it helps
Answer:
Explanation:
Given that,
The mutual inductance of the two coils is
M = 300mH = 300 × 10^-3 H
M = 0.3 H
Current increase in the coil from 2.8A to 10A
∆I = I_2 - I_1 = 10 - 2.8
∆I = 7.2 A
Within the time 300ms
t = 300ms = 300 × 10^-3
t = 0.3s
Second Coil resistance
R_2 = 0.4 ohms
We want to find the current in the second coil,
The same induced EMF is in both coils, so let find the EMF,
From faradays law
ε = Mdi/dt
ε = M•∆I / ∆t
ε = 0.3 × 7.2 / 0.3
ε = 7.2 Volts
Now, this is the voltage across both coils,
Applying ohms law to the second coil, V=IR
ε = I_2•R_2
0.72 = I_2 • 0.4
I_2 = 0.72 / 0.4
I_2 = 1.8 Amps
The current in the second coil is 1.8A
Answer:F=1.7802
Explanation:
Since we've been given the mass to be .18kg,we are asked to find the Force of which the formulae is
F=ma where f-force,m-mass and a-acceleration due to gravity
So we can just substitute
F-?.m=.18 and a9.89
F=.18×9.89
F=1.7802N
Answer:
a =( -0.32 i ^ - 2,697 j ^) m/s²
Explanation:
This problem is an exercise of movement in two dimensions, the best way to solve it is to decompose the terms and work each axis independently.
Break down the speeds in two moments
initial
v₀ₓ = v₀ cos θ
v₀ₓ = 5.25 cos 35.5
v₀ₓ = 4.27 m / s
= v₀ sin θ
= 5.25 sin35.5
= 3.05 m / s
Final
vₓ = 6.03 cos (-56.7)
vₓ = 3.31 m / s
= v₀ sin θ
= 6.03 sin (-56.7)
= -5.04 m / s
Having the speeds and the time, we can use the definition of average acceleration that is the change of speed in the time order
a = (
- v₀) /t
aₓ = (3.31 -4.27)/3
aₓ = -0.32 m/s²
= (-5.04-3.05)/3
= -2.697 m/s²
<span>b. The coefficient of static friction for all contacting surfaces is μs=0.35. neglect friction at the rollers.
</span>