Answer:
37.5 N Hard
Explanation:
Hook's law: The force applied to an elastic material is directly proportional to the extension provided the elastic limit of the material is not exceeded.
Using the expression for hook's law,
F = ke.............. Equation 1
F = Force of the athlete, k = force constant of the spring, e = extension/compression of the spring.
Given: k = 750 N/m, e = 5.0 cm = 0.05 m
Substitute into equation 1
F = 750(0.05)
F = 37.5 N
Hence the athlete is pushing 37.5 N hard
You would do distance divided by speed. So 150÷3, which would equal 5km per hour.
components of the speed of the coin is given as




now the time taken by the coin to reach the plate is given by



now in order to find the height



so it is placed at 1.52 m height
Answer:
B. About 12 degrees
Explanation:
The orbital period is calculated using the following expression:
T = 2π*(
)
Where r is the distance of the planet to the sun, G is the gravitational constant and m is the mass of the sun.
Now, we don't actually need to solve the values of the constants, since we now that the distance from the sun to Saturn is 10 times the distance from the sun to the earth. We now this because 1 AU is the distance from the earth to the sun.
Now, we divide the expression used to calculate the orbital period of Saturn by the expression used to calculate the orbital period of the earth. Notice that the constants will cancel and we will get the rate of orbital periods in terms of the distances to the sun:
= 
Knowing that the orbital period of the earth is 1 year, the orbital period of Saturn will be
years, or 31.62 years.
We find the amount of degrees it moves in 1 year:

or about 12 degrees.
T² caries directly as R³ .
This is Kepler's 3rd law of planetary motion .