For an aqueous solution of MgBr2, a freezing point depression occurs due to the rules of colligative properties. Since MgBr2 is an ionic compound, it acts a strong electrolyte; thus, dissociating completely in an aqueous solution. For the equation:
ΔTf<span> = (K</span>f)(<span>m)(i)
</span>where:
ΔTf = change in freezing point = (Ti - Tf)
Ti = freezing point of pure water = 0 celsius
Tf = freezing point of water with solute = ?
Kf = freezing point depression constant = 1.86 celsius-kg/mole (for water)
m = molality of solution (mol solute/kg solvent) = ?
i = ions in solution = 3
Computing for molality:
Molar mass of MgBr2 = 184.113 g/mol
m = 10.5g MgBr2 / 184.113/ 0.2 kg water = 0.285 mol/kg
For the problem,
ΔTf = (Kf)(m)(i) = 1.86(0.285)(3) = 1.59 = Ti - Tf = 0 - Tf
Tf = -1.59 celsius
Energy is released by the formation of chemical bonds, and energy is
absorbed when the bonds are broken.
<h3>What is a chemical reaction?</h3>
A chemical reaction involves the formation of new compounds from
reactants . It involves the formation and breaking of bonds in the
elements.
Energy is released by the formation of chemical bonds and this type of
reaction is referred to as exothermic while energy is absorbed when the
bonds are broken and is referred to as an endothermic reaction.
Read more about Chemical reaction here brainly.com/question/16416932
Empirical formula is the simplest way the molecular formula can be wrote so here 7 goes into all of these so it would be CH2O