Answer:
- Option A): <em>Due to the constraints upton the angular momentum quantum number, the subshell </em><u><em>2d</em></u><em> does not exist.</em>
Explanation:
The <em>angular momentum quantum number</em>, identified with the letter l (lowercase L), number is the second quantum number.
This number identifies the shape of the orbital or <em>kind of subshell</em>.
The possible values of the angular momentum quantum number, l, are constrained by the value of the principal quantum number n: l can take values from 0 to n - 1.
So, you can use this guide:
Principal quantum Angular momentum Shape of the orbital
number, n quantum number, l
1 0 s
2 0, 1 s, p
3 0, 1, 2 s, p, d
Hence,
- <u>the subshell 2d (n = 2, l = 2) is not feasible</u>.
- 2s (option B) is possible: n = 2, l = 0
- 2p (option C) is possible: n = 2, l = 1
True.
<span><span>Melting points decrease down a group and increase across a period.</span>
</span>
The answer is "More Stable."
The best and most correct answer among the choices provided by your question is the first choice or letter A.
<span>A solute will continue to dissolve in a solvent until an equilibrium is reached.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
<span> It is important to keep the NaOH solution covered at all time because sodium hydroxide is a very good remover of Carbon dioxide from the air means sodium hydroxide absorbs the carbon dioxide from the air react with that so the concentration of your solution will also change if you uncover the NaOH.
The following reaction occurs when sodium hydroxide reacts with carbon dioxide;
</span><span>2 NaOH(aq) + CO2(g) --> Na3CO3(aq) + H2O(l) </span>