The rate constant of a reaction can be computed by the ratio of the changes in the concentration and time take taken for it to decompose. Thus, if the rate constant is given to be 14 M/s, we have

where C are the concentration values and t is the time taken for it to decompose.


Thus, it will take 0.003 s for it to decompose.
Answer: 0.003 s
Answer:
a) 
b) 
c) 
d) 
e)
&
f) 
Explanation:
From the question we are told that:
Stretch Length 
Mass 
Total stretch length
a)
Generally the equation for Force F on the spring is mathematically given by


b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

Where
A=Amplitude

And

Therefore


c)
Generally the equation for Max Acceleration of Mass on the spring is mathematically given by



d)
Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by



e)
Generally the equation for the period T is mathematically given by



Generally the equation for the Frequency is mathematically given by


f)
Generally the Equation of time-dependent vertical position of the mass is mathematically given by

Where
'= signify order of differentiation
Balanced forces do not cause a change in motion. When balanced forces act on an object at rest, the object will not move. If you push against a wall, the wall pushes back with an equal
Answer:
150 million kilometres
Explanation:
The astronomical unit (symbol: au, or AU or AU) is a unit of length, roughly the distance from Earth to the Sun and equal to 150 million kilometres (93 million miles) or 8.3 light minutes.
In thermodynamics, entropy (symbolized as S) is a physical magnitude for a thermodynamic system in equilibrium. It measures the number of microstates compatible with the equilibrium macrostate, it can also be said that it is the reason for an increase between internal energy versus an increase in system temperature.
The universe tends to distribute energy evenly; that is, to maximize entropy. Intuitively, entropy is a physical quantity that, by calculation, allows us to determine the part of energy per unit of temperature that cannot be used to produce work.
Therefore the correct answer is B.