The two electrons that share an orbital repel each other.
All electrons bear a negative charge. They are held in their orbits by the attractive force of charged protons. The farther away an orbital is to the atomic nucleus the easier it is to expunge an electron from this distant orbital shell.
Explanation:
Because electrons have the same negative charge, they repel each other especially when they occupy the same orbital shell in an atom. To reduce this repulsion, each of the electrons in the orbital shell (remember electrons occupy orbital shells of atoms in 2s) assumes an opposite quantum (M<em>s</em>) spin; one with – ½ while the other + ½ .
Learn More:
For more about electrons check out;
brainly.com/question/13251728
brainly.com/question/13174681
#LearnWithBrainly
The Lyman series can be expressed in the formula <span><span>1/λ</span>=<span>RH</span><span>(1−<span>1/<span>n2</span></span>) where </span><span><span>RH</span>=1.0968×<span>107</span><span>m<span>−1</span></span>=<span><span>13.6eV</span><span>hc
</span></span></span></span>Where n is a natural number greater than or equal to 2 (i.e. n = 2,3,4,...). Therefore, the lines seen in the image above are the wavelengths corresponding to n=2 on the right, to n=∞on the left (there are infinitely many spectral lines, but they become very dense as they approach to n=∞<span> (Lyman limit), so only some of the first lines and the last one appear).
The wavelengths (nm) in the Lyman series are all ultraviolet
:2 3 4 5 6 7 8 9 10 11
Wavelength (nm) 121.6 102.6 97.3 95 93.8 93.1 92.6 92.3 92.1 91.9 91.18 (Lyman limit)
In your case for the n=5 line you have to replace "n" in the above formula for 5 and you should get a value of 95 x 10^-9 m for the wavelength. then you have to use the other equation that convert wavelength to frequency. </span>
It is 79 - + 3 = 76 electrons.
The answer to your question is,
B) CaCl2
-Mabel <3