I think the correct answer would be the third option. The reason I2 has a higher melting point than F2 is because I2 possesses a more polarizable electron cloud. I2 contains more electrons than F2 which would result to a stronger intermolecular forces. Having stronger intermoleculer forces would mean more energy is needed to break the bonds so a higher melting point would be observed.
Answer:
5×10⁵ L of ammonia (NH3)
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N2 + 3H2 —> 2NH3
From the balanced equation above, we can say that:
3 L of H2 reacted to produce 2 L of NH3.
Finally, we shall determine the volume of ammonia (NH3) produced by the reaction of 7.5×10⁵ L of H2. This can be obtained as illustrated below:
From the balanced equation above,
3 L of H2 reacted to produce 2 L of NH3.
Therefore, 7.5×10⁵ L of H2 will react to produce = (7.5×10⁵ × 2)/3 = 5×10⁵ L of NH3.
Thus, 5×10⁵ L of ammonia (NH3) is produced from the reaction.
Answer:
0 kcal/mole
Explanation:
The most stable Newman projection corresponds to the minimum potential energy: Answer (e) 0 kcal/mole
<span>The answer is 200 mol of water.
The balanced reaction is 2(H2) + (O2) = 2(H2O)
The limiting reactant is O2 as it will be completely consumed first, before hydrogen gas. Hydrogen gas would need at least 105 mol oxygen gas to be consumed; in excess of the 100 mol O2.
Looking at the stoichiometric coefficients, the ratio between water and oxygen is 2:1.
Therefore, the water produced would be 200 moles.</span>
Fires affect animals mainly through effects on their habitat.