The answer is 1/16.
Half-life is the time required for the amount of a sample to half its value.
To calculate this, we will use the following formulas:
1.

,
where:
<span>n - a number of half-lives
</span>x - a remained fraction of a sample
2.

where:
<span>

- half-life
</span>t - <span>total time elapsed
</span><span>n - a number of half-lives
</span>
So, we know:
t = 10 min
<span>

= 2.5 min
We need:
n = ?
x = ?
</span>
We could first use the second equation to calculate n:
<span>If:

,
</span>Then:

⇒

⇒

<span>
</span>
Now we can use the first equation to calculate the remained fraction of the sample.
<span>

</span>⇒

<span>⇒

</span>
Answer:
All living things are made up of cells.
cells are the basic unit of structure and function of ll living things.
All cells are come from other cells.
Explanation:
The cell theory is historic scientific theory and is universally accepted. This theory was given by Robert Hook in 1665. According to this theory all living things are made up cells.
Cell:
Cell is the smallest unit of life and it is building block of life.
This theory consist of following points:
All living things are made up of cells.
Cells are the basic unit of structure and function of ll living things.
All cells are come from other cells. Which means that cells are originated from pre-existing cells.
The other given options:
Cells comes from nonliving matter.
Cells make up most organisms bu not all.
These are two are not the postulate of cell theory because all living organisms are made of cells.
The condensed structural formula of the product of the reaction of 2,7-dimethyl-4-octene with hydrogen and metal catalyst.
Ch3 CH(CH3) CH2 CH2 CH2 CH2 CH(CH3) CH3
Equation is as follows
CH3 CH(CH3) CH2 C=C CH2 CH(CH3) CH3 + H2→
CH3 CH(CH3)CH2 CH2 CH2 CH2 CH(CH3) CH3
metal catalyst example is nickel and the name of structure formed is
2,7- dimethyl octane
Answer : The electron configurations consistent with this fact is, (b) [Kr] 4d¹⁰
Explanation :
Electronic configuration : It is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom are determined by the electronic configuration.
Paramagnetic compounds : They have unpaired electrons.
Diamagnetic compounds : They have no unpaired electrons that means all are paired.
The given electron configurations of Palladium are:
(a) [Kr] 5s²4d⁸
In this, there are 2 electrons in 's' orbital and 8 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital are paired but 'd' orbital are not paired. So, this configuration shows paramagnetic.
(b) [Kr] 4d¹⁰
In this, there are 10 electrons in 'd' orbital. From the partial orbital diagrams we conclude that electrons in 'd' orbital are paired. So, this configuration shows diamagnetic.
(c) [Kr] 5s¹4d⁹
In this, there are 1 electron in 's' orbital and 9 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital and 'd' orbital are not paired. So, this configuration shows paramagnetic.