Answer
speed of the molecules
s₁ = v t
when velocity is doubled
s₂ = (2 v)t
= 2 s₁
they will hit the wall of container two times as often.
the momentum of molecule
p₁ = mvr
p₂ = m(2v)r = 2(mvr)
= 2 p₁
the momentum change is two times as great.
force is change in momentum
Δp = F(Δt)
mv-(-mv) = 2 mv

F α v
therefore average force impart to the wall on each collision is two times


p α v²
here the velocity is doubled it means pressure becomes four times.
Answer: 1479watts
Explanation:
Power is defined as the energy expended or work done in a specific time.
Mathematically,
Power = Workdone/time taken
Since work done is force × distance
Power = force × distance/time
Force = Mary's weight = 87N
Distance = height of the flight = 102meters
Time = 6.0seconds
Substituting in the formula we have;
Power = 87 × 102/6
Power = 1,479watts
Note that the time must be in seconds before usage. If its given in minutes, you will have to convert to seconds
We can solve this using the Law of Conservation of Momentum. If both marbles are in our system, the initial momentum should equal the final momentum.
The initial momentum can be solved for as so:

*

+

=

(0.06)(0.7) + (0.03)(0) = 0.042 [kg * m/s]
So if the system has an initial momentum of 0.042, it should have the same final momentum.

(0.06)(-0.2) + (0.03)(

) = 0.042
(0.03)(

) = 0.54
(

) = 18 [m/s]
The work done to stop the car is -208.33 kJ
From work-kinetic energy principles, the change in kinetic energy of the car ,ΔK equals the work done to stop the car, W.
W = ΔK = 1/2m(v'² - v²) where
- m = mass of car = 1500 kg,
- v = initial velocity of car = 60 km/h = 60 × 1000 m/3600 s = 16.67 m/s and
- v' = final velocity of car = 0 m/s (since the car stops).
<h3 /><h3>Calculating the work done</h3>
Substituting the values of the variables into the equation, we have
W = 1/2m(v'² - v²)
W = 1/2 × 1500 kg(v(0 m/s)² - (16.67 m/s)²)
W = 750 kg(0 (m/s)² - 277.78 (m/s)²)
W = 750 kg(- 277.78 (m/s)²)
W = -208333.33 J
W = -208.33333 kJ
W ≅ -208.33 kJ
So, the work done to stop the car is -208.33 kJ
Learn more about work done here:
brainly.com/question/9821607
80 joule is momentarily stored in each spring
<em><u>Solution:</u></em>
Given that,
The coil springs on a car's suspension have a value of k = 64000 N/m
When the car strikes a bump the springs briefly compress by 5.0 cm (.05 m)
By compressing the spring, we apply a force over a distance
As a result we have done work on the spring
Doing work means that we have transferred energy to spring in form of elastic potential
Therefore,
k = 64000 N/m
x = 0.05m
<em><u>The elastic potential energy is given as:</u></em>

Where, "k" is the spring constant and "x" is the displacement

Thus 80 joule is momentarily stored in each spring