The radius of the cylinder is equal to half the diameter:

The volume of the cylinder is given by:

where h is the heigth of the cylinder. Converting into meters,

And the density of the material will be given by the ratio between the mass and the volume:

Answer:
<h2>volume= 0.85m^3</h2>
Explanation:
<em>The density of a substance is defined as the mass per unit volume of the substance, the unit is in kg/m^3 and it is represented by the greek letter rho</em>
Step one:
given data
we are told that the density of Co2= 1.98 kg/m3
and the mass of Co2 is= 1.70 kg
we know the relation between mass, volume and density is

make volume subject of formula we have

substitute we have

False:Laws are theories that have not been proven false.
The answer is D because it’s going by the miles
Answer:
See explanation below
Explanation:
If we are talking about the kinetic energy of the cylinder of oxygen:
The kinetic energy possessed by any object is given by

where
m is the mass of the object
v is its speed
In this case, we have one cylinder carried by a car and one standing on a platform: this means that the speed of the cylinder carried by the car will be different from zero (and so also its kinetic energy will be different from zer), while the speed of the cylinder standing on the platform will be zero (and so its kinetic energy also zero). Therefore, the kinetic energy of the cylinder carried by the car will be larger than that standing on a platform.
Instead, if we are talking about the kinetic energy due to the random motion of the molecules of oxygen inside the cylinder:
The kinetic energy of the molecules in a gas is directly proportional to the absolute temperature of the gas:

where k is called Boltzmann constant and T is the absolute temperature of the gas. Therefore, we see that K does not depend on whether the gas is in motion or not, but only on its temperature - therefore, in this case there is no difference between the kinetic energy of the cylinder carried by the car and that standing on the platform (assuming they are at the same temperature)