3Zn + 8HNO₃⇒ 3Zn(NO₃)₂ + 2NO + 4H₂O
<h3>Further explanation
</h3>
Equalization of chemical reaction equations can be done using variables. Steps in equalizing the reaction equation:
- 1. gives a coefficient on substances involved in the equation of reaction such as a, b, or c etc.
- 2. make an equation based on the similarity of the number of atoms where the number of atoms = coefficient × index between reactant and product
- 3. Select the coefficient of the substance with the most complex chemical formula equal to 1
For gas combustion reaction which is a reaction of hydrocarbons with oxygen produces CO₂ and H₂O (water vapor). can use steps:
Balancing C atoms, H and the last O atoms
Reaction
Zn + HNO₃⇒ Zn(NO₃)₂ + NO + H₂O
aZn + bHNO₃⇒ Zn(NO₃)₂ + cNO + dH₂O
Zn : left = a, right =1 ⇒a=1
H : left = b, right = 2d⇒ b=2d (eq 1)
N : left = b, right = 2+c⇒b=2+c (eq 2)
O : left = 3b, right = 6+c+d ⇒3b=6+c+d(eq 3)
3(2d)=6+c+d
6d=6+c+d
5d=6+c (eq 4)
3(2+c)=6+c+d
6+3c=6+c+d
2c=d (eq 5)
5(2c)=6+c
10c=6+c
9c=6
c = 2/3
d = 2 x 2/3
d = 4/3
b = 2 x 4/3
b = 8/3
The equation
aZn + bHNO₃⇒ Zn(NO₃)₂ + cNO + dH₂O to
Zn + 8/3HNO₃⇒ Zn(NO₃)₂ + 2/3NO + 4/3H₂O x 3
3Zn + 8HNO₃⇒ 3Zn(NO₃)₂ + 2NO + 4H₂O
Solar flare: a brief eruption of intense high-energy radiation from the sun's surface, associated with sunspots and causing electromagnetic disturbances on the earth, as with radio frequency communications and power line transmissions.
Sunspot Prominence: It is a large, bright, gaseous feature extending outward from the Sun's surface, often in a loop shape. It is similar to a Solar Flare
Hope this help
This is an incomplete question, here is a complete question.
The rearrangement of methyl isonitrile (CH₃NC) to acetonitrile (CH₃NC) is a first-order reaction and has a rate constant of 5.11 × 10⁻⁵ s⁻¹ at 472 K. If the initial concentration of CH₃NC is 3.00 × 10⁻² M :
How many hours will it take for the concentration of methyl isonitrile to drop to 14.0 % of its initial value?
Answer : The time taken will be, 10.7 hours
Explanation :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = ?
a = let initial amount of the reactant = 100
a - x = amount left after decay process = 14 % of 100 = 14
Now put all the given values in above equation, we get


Therefore, the time taken will be, 10.7 hours
Answer: For safety
Explanation: One of the biggest reason why the water we use are treated is so that it is safe for us to use.