1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dalvyx [7]
2 years ago
15

Name THREE things that impact a collision.

Physics
1 answer:
Lapatulllka [165]2 years ago
4 0

Answer:

The three types of impact that occur are those involving the vehicle, the body of the vehicle occupant, and the organs within the body of the occupant.

You might be interested in
What is created by the flow of electric current?
grin007 [14]
C.) a magnetic field is the correct answer…
7 0
2 years ago
Read 2 more answers
How does competition affect population size? Use the terms carrying capacity and limiting factor with your example.
svetoff [14.1K]

Limiting factors are resources or other factors in the environment that can lower the population growth rate. Competition for resources like food and space cause the growth rate to stop increasing, so the population levels off. This flat upper line on a growth curve is the carrying capacity.

6 0
3 years ago
Read 2 more answers
Nore ordered an ice cream cone.
Stella [2.4K]

Answer:

okay

Explanation:

okay

6 0
3 years ago
Read 2 more answers
A ball is kicked horizontally at 4.6 m/s off of a cliff 13.4 m high. How far from the cliff will it land.
Mekhanik [1.2K]
<h3>Answer:</h3>

7.53 m

<h3>Explanation:</h3>

<u>We are given:</u>

Initial Horizontal Velocity of the Ball = 4.6 m/s

Initial Vertical Velocity of the Ball = 0 m/s

Height from which ball is kicked = 13.4 m

<u>Time taken by the ball to reach the ground:</u>

The ball has an initial vertical velocity of 0 m/s

it also has a downward acceleration of 10 m/s² due to gravity

<u>Solving for the time taken:</u>

s = ut + 1/2(at²)                 [second equation of motion]

replacing the values

13.4 = (0)(t) + 1/2 (10)(t²)

13.4 = 5t²

t² = 13.4/5                  [dividing both sides by 5]

t² = 2.68

t = 1.637 seconds     [taking the square root of both sides]

<u>Horizontal distance covered by the ball:</u>

Since there are no horizontal opposing forces on the ball,

the ball will more horizontally at a velocity of 4.6 m/s until it hits the ground

We calculated that the ball will hit the ground in 1.637 seconds

<u>Distance covered:</u>

s = ut + 1/2 (at²)                            [seconds equation of motion]

s = ut                                            [since a = 0m/s² in the horizontal plane]

replacing the values

s = 4.6 * 1.637

s = 7.53 m

Hence, the ball landed 7.53 m from the cliff

5 0
3 years ago
A plane electromagnetic wave, with wavelength 4.1 m, travels in vacuum in the positive direction of an x axis. The electric fiel
marusya05 [52]

(a) 7.32\cdot 10^7 Hz

The frequency of an electromagnetic waves is given by:

f=\frac{c}{\lambda}

where

c=3.0\cdot 10^8 m/s is the speed of light

\lambda=4.1 m is the wavelength of the wave in the problem

Substituting into the equation, we find

f=\frac{3.0\cdot 10^8 m/s}{4.1 m}=7.32\cdot 10^7 Hz

(b) 4.60\cdot 10^8 rad/s

The angular frequency of a wave is given by

\omega = 2\pi f

where

f is the frequency

For this wave,

f=7.32\cdot 10^7 Hz

So the angular frequency is

\omega=2\pi(7.32\cdot 10^7 Hz)=4.60\cdot 10^8 rad/s

(c) 1.53 m^{-1}

The angular wave number of a wave is given by

k=\frac{2\pi}{\lambda}

where

\lambda is the wavelength of the wave

For this wave, we have

\lambda=4.1 m

so the angular wave number is

k=\frac{2\pi}{4.1 m}=1.53 m^{-1}

(d) 1.03\cdot 10^{-6}T

For an electromagnetic wave,

E=cB

where

E is the magnitude of the electric field component

c is the speed of light

B is the magnitude of the magnetic field component

For this wave,

E = 310 V/m

So we can re-arrange the equation to find B:

B=\frac{E}{c}=\frac{310 V/m}{3\cdot 10^8 m/s}=1.03\cdot 10^{-6}T

(e) z-axis

In an electromagnetic wave, the electric field and the magnetic field oscillate perpendicular to each other, and they both oscillate perpendicular to the direction of propagation of the wave. Therefore, we have:

- direction of propagation of the wave --> positive x axis

- direction of oscillation of electric field --> y axis

- direction of oscillation of magnetic field --> perpendicular to both, so it must be z-axis

(f) 127.5 W/m^2

The time-averaged rate of energy flow of an electromagnetic wave is given by:

I=\frac{E^2}{2\mu_0 c}

where we have

E = 310 V/m is the amplitude of the electric field

\mu_0 is the vacuum permeability

c is the speed of light

Substituting into the formula,

I=\frac{(310 V/m)^2}{2(4\pi\cdot 10^{-7} H/m) (3\cdot 10^8 m/s)}=127.5 W/m^2

(g) 1.53\cdot 10^{-8} kg m/s

For a surface that totally absorbs the wave, the rate at which momentum is transferred to the surface given by

\frac{dp}{dt}=\frac{A}{c}

where the <S> is the magnitude of the Poynting vector, given by

=\frac{EB}{\mu_0}=\frac{(310 V/m)(1.03\cdot 10^{-6} T)}{4\pi \cdot 10^{-7}H/m}=254.2 W/m^2

and where the surface is

A = 1.8 m^2

Substituting, we find

\frac{dp}{dt}=\frac{(254.2 W/m^2)(1.8 m^2)}{3\cdot 10^8 m/s}=1.53\cdot 10^{-8} kg m/s

(h) 8.47\cdot 10^{-7} N/m^2

For a surface that totally absorbs the wave, the radiation pressure is given by

p=\frac{}{c}

where we have

=254.2 W/m^2

c=3\cdot 10^8 m/s

Substituting, we find

p=\frac{254.2 W/m^2}{3\cdot 10^8 m/s}=8.47\cdot 10^{-7} N/m^2

8 0
3 years ago
Other questions:
  • Two very large parallel sheets a distance d apart have their centers directly opposite each other. The sheets carry equal but op
    9·2 answers
  • What is the momentum of a 950 kg car moving at 10.0 m/s?
    9·2 answers
  • What are the products in the reaction in the introduction above? Select all that apply.
    8·1 answer
  • A blank is a quality that has magnitude and direction
    7·1 answer
  • “All dogs bark. Fido barks. Thus, Fido is a dog,” is an example of which of the following?
    13·1 answer
  • Does Earth´s magnetic field move?
    14·1 answer
  • The 243000-lb space-shuttle orbiter touches down at about 236 mi/hr. The drag chute is deployed at 189 mi/hr, the wheel brakes a
    8·1 answer
  • Which one of the following statements is true: The reactive power is the power dissipated in the form of heat by the network. Th
    14·1 answer
  • A ball rolls off an 8.0 m high building and strikes the ground 5.0 m away from the base of the building. How fast was the ball r
    13·1 answer
  • 1
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!