Answer:
2m₁m₃g / (m₁ + m₂ + m₃)
Explanation:
I assume the figure is the one included in my answer.
Draw a free body diagram for each mass.
m₁ has a force T₁ up and m₁g down.
m₂ has a force T₁ up, T₂ down, and m₂g down.
m₃ has a force T₂ up and m₃g down.
Assume that m₁ accelerates up and m₂ and m₃ accelerate down.
Sum of the forces on m₁:
∑F = ma
T₁ − m₁g = m₁a
T₁ = m₁g + m₁a
Sum of the forces on m₂:
∑F = ma
T₁ − T₂ − m₂g = m₂(-a)
T₁ − T₂ − m₂g = -m₂a
(m₁g + m₁a) − T₂ − m₂g = -m₂a
m₁g + m₁a + m₂a − m₂g = T₂
(m₁ − m₂)g + (m₁ + m₂)a = T₂
Sum of the forces on m₃:
∑F = ma
T₂ − m₃g = m₃(-a)
T₂ − m₃g = -m₃a
a = g − (T₂ / m₃)
Substitute:
(m₁ − m₂)g + (m₁ + m₂) (g − (T₂ / m₃)) = T₂
(m₁ − m₂)g + (m₁ + m₂)g − ((m₁ + m₂) / m₃) T₂ = T₂
(m₁ − m₂)g + (m₁ + m₂)g = ((m₁ + m₂ + m₃) / m₃) T₂
m₁g − m₂g + m₁g + m₂g = ((m₁ + m₂ + m₃) / m₃) T₂
2m₁g = ((m₁ + m₂ + m₃) / m₃) T₂
T₂ = 2m₁m₃g / (m₁ + m₂ + m₃)
Answer:
water
is missing in above equation
hope it helps
Answer:
we see it is a linear relationship.
Explanation:
The magnetic flux is u solenoid is
B = μ₀ N/L I
where N is the number of loops, L the length and I the current
By applying this expression to our case we have that the current is the same in all cases and we can assume the constant length. Consequently we see that the magnitude of the magnetic field decreases with the number of loops
B = (μ₀ I / L) N
the amount between paracentesis constant, in the case of 4 loop the field is worth
B = cte 4
N B
4 4 cte
3 3 cte
2 2 cte
1 1 cte
as we see it is a linear relationship.
In addition, this effect for such a small number of turns the direction of the field that is parallel to the normal of the lines will oscillate,
Answer: The answer is C.) 25 m/s^2.
Explanation: If you input 5 as s, you would have to use the exponent 2. This means that you have to multiply 5 by 5. 5 x 5= 25.
Edit: Also, because the surface is frictionless, it will make the object go faster too. Nothing can really slow it down unless something blocks it.