Work is force multiplied by the distance the force moves the object
Honestly i don’t know but I’d just guess if I were you
Refer to the diagram shown below.
Still-water speed = 9.5 m/s
River speed = 3.75 m/s down stream.
The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.
The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s
The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°
Answer: 10.2 m/s at 21.5° downstream.
<span>1078 kgm / s would be the answer I hope this helps!!!</span>
Answer:
(a). The charge on the outer surface is −2.43 μC.
(b). The charge on the inner surface is 4.00 μC.
(c). The electric field outside the shell is 
Explanation:
Given that,
Charge q₁ = -4.00 μC
Inner radius = 3.13 m
Outer radius = 4.13 cm
Net charge q₂ = -6.43 μC
We need to calculate the charge on the outer surface
Using formula of charge



The charge on the inner surface is q.


We need to calculate the electric field outside the shell
Using formula of electric field

Put the value into the formula



Hence, (a). The charge on the outer surface is −2.43 μC.
(b). The charge on the inner surface is 4.00 μC.
(c). The electric field outside the shell is 