Answer:
d' = 75.1 cm
Explanation:
It is given that,
The actual depth of a shallow pool is, d = 1 m
We need to find the apparent depth of the water in the pool. Let it is equal to d'.
We know that the refractive index is also defined as the ratio of real depth to the apparent depth. Let the refractive index of water is 1.33. So,
or
d' = 75.1 cm
So, the apparent depth is 75.1 cm.
Answer:
Density is the amount of mass in a specified space. It is a way to measure how compact an object is
Explanation:
Answer:
a) y= 3.5 10³ m, b) t = 64 s
Explanation:
a) For this exercise we use the vertical launch kinematics equation
Stage 1
y₁ = y₀ + v₀ t + ½ a t²
y₁ = 0 + 0 + ½ a₁ t²
Let's calculate
y₁ = ½ 16 10²
y₁ = 800 m
At the end of this stage it has a speed
v₁ = vo + a₁ t₁
v₁ = 0 + 16 10
v₁ = 160 m / s
Stage 2
y₂ = y₁ + v₁ (t-t₀) + ½ a₂ (t-t₀)²
y₂ = 800 + 150 5 + ½ 11 5²
y₂ = 1092.5 m
Speed is
v₂ = v₁ + a₂ t
v₂ = 160 + 11 5
v₂ = 215 m / s
The rocket continues to follow until the speed reaches zero (v₃ = 0)
v₃² = v₂² - 2 g y₃
0 = v₂² - 2g y₃
y₃ = v₂² / 2g
y₃ = 215²/2 9.8
y₃ = 2358.4 m
The total height is
y = y₃ + y₂
y = 2358.4 + 1092.5
y = 3450.9 m
y= 3.5 10³ m
b) Flight time is the time to go up plus the time to go down
Let's look for the time of stage 3
v₃ = v₂ - g t₃
v₃ = 0
t₃ = v₂ / g
t₃ = 215 / 9.8
t₃ = 21.94 s
The time to climb is
= t₁ + t₂ + t₃
t_{s} = 10+ 5+ 21.94
t_{s} = 36.94 s
The time to descend from the maximum height is
y = v₀ t - ½ g t²
When it starts to slow down it's zero
y = - ½ g t_{b}²
t_{b} = √-2y / g
t_{b} = √(- 2 (-3450.9) /9.8)
t_{b} = 26.54 s
Flight time is the rise time plus the descent date
t = t_{s} + t_{b}
t = 36.94 + 26.54
t =63.84 s
t = 64 s
Hey! So referring to the data the thing we can clearly see is that in a vacuum, everything, regardless of its mass, falls at the same speed.
Acceleration is often confused with speed, or velocity, but the difference is, acceleration by definition is the rate of which an object falls with respect to its mass and time.
Every single thing in the world falls at the same acceleration, this is because of gravity. The difference is the speed of which it falls. In space, there is not any gravity, and so, the objects are able to fall at the same speed regardless of their mass.