Answer:
The answer to your question is: C. -9.81 m/s²
Explanation:
A. 9.81 m/s² acceleration is considered positive when it goes to the center of the earth, so this option is incorrect.
B. 0 m/s² This option is incorrect because acceleration is 0 for a linear motion without acceleration.
C. -9.81 m/s² If a projectile goes to the sky, then the acceleration will be negative.
D. It is not constant. Acceleration is constant.
The final vertical velocity of the skydiver at 50.8 m of fall is 31.56 m/s.
<h3>
Time of motion of the girl</h3>
The time of motion of the girl is calculated as follows;
h = vt + ¹/₂gt²
where;
- v is initial vertical velocity = 0
- t is time of motion
- g is acceleration due to gravity
Substitute the given parameters and solve for time of motion;
50.8 = 0 + ¹/₂(9.8)t²
2(50.8) = 9.8t²
101.6 = 9.8t²
t² = 101.6/9.8
t² = 10.367
t = √10.367
t = 3.22 seconds
<h3>Final vertical velocity of the skydiver</h3>
vf = vi + gt
where;
vi is the initial vertical velocity = 0
vf = 0 + 9.8(3.22)
vf = 31.56 m/s
Thus, the final vertical velocity of the skydiver at 50.8 m of fall is 31.56 m/s.
Learn more about vertical velocity here: brainly.com/question/24949996
#SPJ1
The average radius(r) of each grain is r = 50 nanometers
= 50*10^-6 meters
Since it is spherical, so
Volume=(4/3)*pi*r^3
V= (4/3)*pi*(50*10^-6)^3
V=5.23599*10^-13 m^3
We are given the Density(ρ) =2600kg/m^3
We know that:
Density(p) = mass(m)/volume(V)
m = ρV
So the mass of a single grain is:
m = 5.23599*10^-13 * 2600 = 1.361357*10^-9 kg
The surface area of a grain is:
a = 4*pi*r^2
a = 4*pi*(50*10^-6)^2
a = 3.14*10^-8 m^2
Since we know the surface area and mass of a grain, the
conversion factor is:
1.361357*10^-9 kg / 3.14*10^-8 m^2
Find the Surface area of the cube:
cube = 6a^2
cube = 6*1.1^2 = 7.26m^2
multiply this by the converions ratio to get:
total mass of sand grains = (7.26 m^2 * 1.361357*10^-9 kg)
/ (3.14*10^-8 m^2)
total mass of sand grains = 0.3148 kg = 314.80 g
The answer you are looking for is A
Sun is the biggest mass in the ss