From conservation of energy, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
The given weight of Elliot is 600 N
From conservation of energy, the total mechanical energy of Elliot must have been converted to elastic potential energy. Then, the elastic potential energy from the spring was later converted to maximum potential energy P.E of Elliot.
P.E = mgh
where mg = Weight = 600
To find the height Elliot will reach, substitute all necessary parameters into the equation above.
250 = 600h
Make h the subject of the formula
h = 250/600
h = 0.4167 meters
Therefore, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
Learn more about energy here: brainly.com/question/24116470
Answer:
Free body diagrams are used to describe situations where several forces act on an object. On the other hand Vector diagrams are used to resolve (break down) a single force into two forces acting as right angles to eachother
Explanation:
Hope this helps !
Answer:
Explanation:
ignore air resistance
Let t be the time of fall for the dropped stone.
½(9.8)t² = 43.12(t - 2.2) + ½(9.8)(t - 2.2)²
4.9t² = 43.12t - 94.864 + 4.9(t² - 4.4t + 4.84)
4.9t² = 43.12t - 94.864 + 4.9t² - 21.56t + 23.716
0 = 21.56t - 71.148
t = 71.148/21.56 = 3.3 s
h = ½(9.8)3.3² = 53.361 = 53 m
or
h = 43.12(3.3 - 2.2) + ½(9.8)(3.3 - 2.2)² = 53.361 = 53 m
True
The electromagnet will become stronger if we add more coils because there are more field lines in a loop then there is in a straight piece of wire. In a solenoid there are a lot of loops and they are concentrated in the middle, as more loops are added the field lines get larger, therefore making the electromagnet stronger.
Answer:
a. Stars all warm objects
c. Some unstable atomic nuclei
Explanation:
Gamma rays are photons of very high energy (beyond 100keV) enough to remove an electron from its orbit.
They have a very short wavelength, less than 5 meters from the peak, and can be produced by nuclear decay, especially in the breasts of massive stars at the end of life.
They were discovered by the French chemist Paul Villard (1860 to 1934).
While X-rays are produced by electronic transitions in general caused by the collision of an electron with an atom at high speed, gamma rays are produced by nuclear transitions.
Gamma rays produce damage similar to those caused by X-rays or ultraviolet rays (burns, cancer and genetic mutations).
The sources of gamma rays that we observe in the universe come from <u>massive stars (hypernovas) or some warm objects on the space</u> that end their lives by a gravitational collapse that leads to the formation of a neutron star or a black hole, as well as <u>unstable radioactive nuclei </u>that emit radiation gamma to reach its steady state.