south = -(north)
Displacement = (4 km north) + (2 km south) + (5 km north) + (5 km south)
Displacement = (4 km north) - (2 km north) + (5 km north) - (5 km north)
Displacement = (4 - 2 + 5 - 5) km north
<u>Displacement = 2 km north </u>
Answer:
the object is no longer in equilibrium .
Answer:
Explanation:
Parameters given:
Mass of Puck 1, m = 1 kg
Mass of Puck 2, M = 1 kg
Initial velocity of Puck 1, u = 20 m/s
Initial velocity of Puck 2, U = 0 m/s
Final velocity of Puck 1, v = 5 m/s
Since we are told that momentum is conserved, we apply the principle of conservation of momentum:
Total initial momentum of the system = Total final momentum of the system
mu + MU = mv + MV
(1 * 20) + (1 * 0) = (1 * 5) + (1 * V)
20 = 5 + V
V = 20 - 5 = 15 m/s
Puck 2 moves with a velocity of 15 m/s
Answer:
Gram
Explanation:
Meter is a unit used to measure length and liter is used to measure liquids therefore using process of elimination the answer has to be gram
<span>Storm cells in a squall line typically move from the southwest to the northeast, and as the mature cells in the northeast begin to die off, new ones are formed at the opposite end to advance the line. The air in the southwest corner has strong vertical updrafts that allow new cells to grow and develop into thunderstorms.</span>