Answer:
Data:-m=0.88kg ,g=9.8m/sec² ,P.E=96J ,h=?
Explanation:
solution ,P.E=mgh here we have to find h so h=P.E/mg ,h=96/0.88×9.8 ,h=96/8.624=11.131m and if you want to verify so just put the value of h in same formula, likewise :-P.E=mgh ,P.E=0.88×9.8×11.131=96J so we got the same value of P.E as it is given the question (verified).
<u>Answer:</u>
Ball will move 92.8125 meter along the cliff in 7.5 seconds.
<u>Explanation:</u>
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
In this case initial velocity = 0 m/s, acceleration = 3.3
, we need to calculate displacement when time = 7.5 seconds.
Substituting

So ball will move 92.8125 meter along the cliff in 7.5 seconds.
Answer:
The final velocity of the cart is
Explanation:
From the question we are told that
The mass of the girl is 
The mass of the cart is 
The speed of the cart and kid(girl) is 
The final velocity of the girl is 
Let assume that velocity eastward is positive and velocity westward is negative (Note that if we assume vise versa it wouldn't affect the answer )
The total momentum of the system before she steps off the back of the cart
is mathematically evaluated as

substituting values


The total momentum after she steps off the back of the cart is mathematically evaluated as

Where
is the final velocity of the cart
substituting values


Now according to the law of conservation of momentum

So

=> 
Since the value is positive it implies that the cart moved eastward
Answer:
λ = 8.716 mm
Explanation:
Given:
- d = 10 cm
- Q >= 5 degrees
Find:
- Find the shortest wavelength of light for which this apparatus is useful
Solution:
- The formula that relates the split difference and angle of separation between successive fringes is given by:
d*sin(Q) = n*λ
Where,
λ: wavelength
d: split separation
Q: angle of separation between successive fringes
m: order number.
- Since this apparatus only shows the first order light so m =1
- the shortest possible wavelength corresponds to:
d*sin(Q) = λ
λ = 0.1*sin(5)
λ = 8.716 mm