The correct answer is the Mesosphere. <span>Mesosphere </span><span>is the layer of the Earth's atmosphere that is directly above the stratopause and directly below the mesopause.</span>
Answer:
Draw line perpendicular to mirror
Angle of incidence = angle between incident ray and perpendicular
Angle of reflection = angle between reflected ray and perpendicular
32 + 32 = 64
Angle of incidence = angle of reflection = 32 deg
Answer:
The electric field at x = 3L is 166.67 N/C
Solution:
As per the question:
The uniform line charge density on the x-axis for x, 0< x< L is 
Total charge, Q = 7 nC = 
At x = 2L,
Electric field, 
Coulomb constant, K = 
Now, we know that:

Also the line charge density:

Thus
Q = 
Now, for small element:


Integrating both the sides from x = L to x = 2L

![\vec{E_{2L}} = K\lambda[\frac{- 1}{x}]_{L}^{2L}] = K\frac{Q}{L}[frac{1}{2L}]](https://tex.z-dn.net/?f=%5Cvec%7BE_%7B2L%7D%7D%20%3D%20K%5Clambda%5B%5Cfrac%7B-%201%7D%7Bx%7D%5D_%7BL%7D%5E%7B2L%7D%5D%20%3D%20K%5Cfrac%7BQ%7D%7BL%7D%5Bfrac%7B1%7D%7B2L%7D%5D)
![\vec{E_{2L}} = (9\times 10^{9})\frac{7\times 10^{- 9}}{L}[frac{1}{2L}] = \frac{63}{L^{2}}](https://tex.z-dn.net/?f=%5Cvec%7BE_%7B2L%7D%7D%20%3D%20%289%5Ctimes%2010%5E%7B9%7D%29%5Cfrac%7B7%5Ctimes%2010%5E%7B-%209%7D%7D%7BL%7D%5Bfrac%7B1%7D%7B2L%7D%5D%20%3D%20%5Cfrac%7B63%7D%7BL%5E%7B2%7D%7D)
Similarly,
For the field in between the range 2L< x < 3L:

![\vec{E} = K\lambda[\frac{- 1}{x}]_{2L}^{3L}] = K\frac{Q}{L}[frac{1}{6L}]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20K%5Clambda%5B%5Cfrac%7B-%201%7D%7Bx%7D%5D_%7B2L%7D%5E%7B3L%7D%5D%20%3D%20K%5Cfrac%7BQ%7D%7BL%7D%5Bfrac%7B1%7D%7B6L%7D%5D)
![\vec{E} = (9\times 10^{9})\frac{7\times 10^{- 9}}{L}[frac{1}{6L}] = \frac{63}{6L^{2}}](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%289%5Ctimes%2010%5E%7B9%7D%29%5Cfrac%7B7%5Ctimes%2010%5E%7B-%209%7D%7D%7BL%7D%5Bfrac%7B1%7D%7B6L%7D%5D%20%3D%20%5Cfrac%7B63%7D%7B6L%5E%7B2%7D%7D)
Now,
If at x = 2L,

Then at x = 3L:

(a) The wavelength of the wave for the fundamental mode is 2.4 m.
(b) The fundamental frequency of the wave is 2,708.33 Hz.
<h3>Wavelength of the wave for fundamental mode</h3>
The wavelength of the wave for the fundamental mode is calculated as follows;
Node to Node, N → N = λ/2
L = λ/2
λ = 2L
λ = 2 x 1.2
λ = 2.4 m
<h3>Fundamental frequency of the wave</h3>
The fundamental frequency of the wave is calculated as follows;
f = v/λ
f₀ = v/2L
f₀ = (6500)/(2 x 1.2)
f₀ = 2,708.33 Hz
The diagram of the wave for the fundamental mode is in the image uploaded.
Learn more about wavelength here: brainly.com/question/10728818
With a ruler and a calculator