Explanation:
Relation between entropy change and specific heat is as follows.

The given data is as follows.
mass = 500 g,
= 24.4 J/mol K
= 500 K,
= 250 K
Mass number of copper = 63.54 g /mol
Number of moles = 
= 
= 7.86 moles
Now, equating the entropy change for both the substances as follows.
= ![7.86 \times 24.4 \times [500 -T_{f}]](https://tex.z-dn.net/?f=7.86%20%5Ctimes%2024.4%20%5Ctimes%20%5B500%20-T_%7Bf%7D%5D)

= 750
So,
= 
- For the metal block A, change in entropy is as follows.

= ![24.4 log [\frac{375}{500}]](https://tex.z-dn.net/?f=24.4%20log%20%5B%5Cfrac%7B375%7D%7B500%7D%5D)
= -3.04 J/ K mol
- For the block B, change in entropy is as follows.

= ![24.4 log [\frac{375}{250}]](https://tex.z-dn.net/?f=24.4%20log%20%5B%5Cfrac%7B375%7D%7B250%7D%5D)
= 4.296 J/Kmol
And, total entropy change will be as follows.
= 4.296 + (-3.04)
= 1.256 J/Kmol
Thus, we can conclude that change in entropy of block A is -3.04 J/ K mol and change in entropy of block B is 4.296 J/Kmol.
two hydrogen atoms and one oxygen atom. hope this helped.
Answer:
Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. ... Radiation causes the atmosphere particles in this layer to become electrically charged particles, enabling radio waves to be refracted and thus be received beyond the horizon.
Explanation:
The gravitational pull of the moon is not strong enough to attract a significant atmosphere.