1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr1967 [171]
3 years ago
13

When a pair of balanced forces acts on an object, the net force that results is.

Physics
1 answer:
polet [3.4K]3 years ago
7 0
D.  Equal to zero.

Because the forces balance each other.
You might be interested in
A uniformly charged ball of radius a and charge –Q is at the center of a hollowmetal shell with inner radius b and outer radius
vlabodo [156]

Answer:

<u>r < a:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}

<u>r = a:</u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>a < r < b:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>r = b:</u>

E = \frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}

<u>b < r < c:</u>

E = 0

<u>r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

<u>r < c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

Explanation:

Gauss' Law will be applied to each region to find the E-field.

\int \vec{E}d\vec{a} = \frac{Q_{encl}}{\epsilon_0}

An imaginary sphere is drawn with radius r, which is equal to the point where the E-field is asked. The area of this imaginary sphere is multiplied by E, and this is equal to the charge enclosed by this imaginary surface divided by ε0.

<u>r<a:</u>

Since the ball is uniformly charged and not hollow, then the enclosed charge can be found by the following method: If the total ball has a charge -Q and volume V, then the enclosed part of the ball has a charge Q_enc and volume V_enc. Then;

\frac{Q}{V} = \frac{Q_{encl}}{V_{encl}}\\\frac{Q}{\frac{4}{3}\pi a^3} = \frac{Q_{encl}}{\frac{4}{3}\pi r^3}\\Q_{encl} = \frac{Qr^3}{a^3}

Applying Gauss' Law:

E4\pi r^2 = \frac{-Qr^3}{\epsilon_0 a^3}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}\\E = \frac{r}{4\pi a^3}\frac{Q}{\epsilon_0}

The minus sign determines the direction of the field, which is towards the center.

<u>At r = a: </u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>At a < r < b:</u>

The imaginary surface is drawn between the inner surface of the metal sphere and the smaller ball. In this case the enclosed charge is equal to the total charge of the ball, -Q.

<u />E4\pi r^2 = \frac{-Q}{\epsilon_0}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}<u />

<u>At r = b:</u>

<u />E = -\frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}<u />

Again, the minus sign indicates the direction of the field towards the center.

<u>At b < r < c:</u>

The hollow metal sphere has a net charge of +2Q. Since the sphere is a conductor, all of its charges are distributed across its surface. No charge is present within the sphere. The smaller ball has a net charge of -Q, so the inner surface of the metal sphere must possess a net charge of +Q. Since the net charge of the metal sphere is +2Q, then the outer surface of the metal should possess +Q.

Now, the imaginary surface is drawn inside the metal sphere. The total enclosed charge in this region is zero, since the total charge of the inner surface (+Q) and the smaller ball (-Q) is zero. Therefore, the Electric region in this region is zero.

E = 0.

<u>At r < c:</u>

The imaginary surface is drawn outside of the metal sphere. In this case, the enclosed charge is +Q (The metal (+2Q) plus the smaller ball (-Q)).

E4\pi r^2 = \frac{Q}{\epsilon_0}\\E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>At r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

3 0
3 years ago
Help<br>pls give me an honest answer ​
Thepotemich [5.8K]

Answer:

0.0025H

Explanation:

I didn't come here to be part of this all I wanted is just information for my research

8 0
3 years ago
What is a benefit of increased physical fitness
8_murik_8 [283]
The benefit's of increased physical fitness is better health, more pleasing appearance to some, stronger muscles and the reduction of fat.
5 0
3 years ago
Why do people bleed .-.
SashulF [63]
Because the liver helps to regulate blood clotting, people<span> with liver disease (for example, hepatitis or cirrhosis) also have a tendency to </span>bleed<span> easily. Most commonly, easy or excessive bruising occurs because the skin and blood vessels are fragile.

Hope This Helped! :3</span>
3 0
3 years ago
Read 2 more answers
What force must the deltoid muscle provide to keep the arm in this position?
ruslelena [56]

Answer:

Deltoid Force, F_{d} = \frac {r_{a}mgsin\alpha_{a}}{r_{d}sin\alpha_{d}}

Additional Information:

Some numerical information are missing from the question. However, I will derive the formula to calculate the force of the deltoid muscle. All you need to do is insert the necessary information and calculate.  

Explanation:

The deltoid muscle is the one keeping the hand arm in position. We have two torques that apply to the rotating of the arm.

1. The torque about the point in the shoulder for the deltoid muscle, T_{Deltoid}

2. The torque of the arm, T_{arm}  

Assuming the arm is just being stretched and there is no rotation going on,

                        T_{Deltoid} = 0

                       T_{arm} = 0

       ⇒           T_{Deltoid} = T_{arm}

                  r_{d}F_{d}sin\alpha_{d} = r_{a}F_{a}sin\alpha_{a}

Where,

r_{d} is radius of the deltoid

F_{d} is the force of the deltiod

\alpha_{d} is the angle of the deltiod

r_{a} is the radius of the arm

F_{a} is the force of the arm , F_{a} = mg  which is the mass of the arm and acceleration due to gravity

\alpha_{a} is the angle of the arm

The force of the deltoid muscle is,

                                 F_{d} = \frac {r_{a}F_{a}sin\alpha_{a}}{r_{d}sin\alpha_{d}}

but F_{a} = mg ,

                ∴            F_{d} = \frac {r_{a}mgsin\alpha_{a}}{r_{d}sin\alpha_{d}}

7 0
2 years ago
Other questions:
  • Sally and Maria hypothesized that earthworms lived only in dark, damp places. They measured a one-meter square in a shady spot n
    8·2 answers
  • A 112g serving of ice cream contains 19g of fat. What percentage of the serving is fat?
    10·1 answer
  • It is known that the gravitational force of attraction between two alpha particles is much weaker than the electrical repulsion.
    6·1 answer
  • A friend is making vegetable soup. he add some salt to the simmering broth. the salt dissolves, and your friend says the broth s
    12·1 answer
  • Two motorcycles travel along a straight road heading due north. At t = 0 motorcycle 1 is at x = 50.0 m and moves with a constant
    13·1 answer
  • John and Daniel are playing tug-of-war together. John is exerting 10 N of force. Daniel is exerting 12 N of force. What is their
    8·2 answers
  • A 1.00-kg sample of steam at 100.0 °C condenses to water at 100.0 °C. What is the entropy change of the sample if the latent hea
    9·1 answer
  • The color aftereffects phenomenon predicts that, after staring at a bright red rectangle for a period of time, you will see a __
    7·1 answer
  • Question 3 (1 point)
    15·1 answer
  • Is the Transco Tower were actually 3000 meters tall how long would an object take to free fall off the top of the building
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!