Answer:
Lowering the object near the ground decreases its <u>potential energy.</u>
<u></u>
Explanation:
Potential Energy : Energy possessed by the object due to its shape ,Size and Position is called potential energy.
Example :
Change in shape and size : When you compress the spring , potential energy is introduced in it . So it expand quickly when you remove your hand.
Change in position : when you swing , after attaining maximum height (extreme ends) , the swing comes back on its on .This is because at maximum height ,the swing has<u> maximum Potential energy . </u>Hence it fall back on its on because it already has potential energy.
Potential energy(P) is given by the formula :
P = mgh
where ,
m= mass of the object
g = acceleration due to gravity
h = height of the object from the ground
If the height of the object increases from the ground , its potential energy also get increase.
<u><em>On lowering the object The height of the object from the ground reduces . So potential energy also reduces.</em></u>
If 5.0 grams of KCl is dissolved in 500 ml of water, the concentration of the resulting solution will be 0.134M.
<h3>How to calculate concentration?</h3>
The concentration of a solution can be calculated by using the following formula;
Molarity = no of moles ÷ volume
According to this question, 5.0 grams of KCl is dissolved in 500 ml of water. The concentration is calculated as follows:
no of moles of KCl = 5g ÷ 74.5g/mol = 0.067mol
Molarity = 0.067mol ÷ 0.5L = 0.134M
Therefore, if 5.0 grams of KCl is dissolved in 500 ml of water, the concentration of the resulting solution will be 0.134M.
Learn more about concentration at: brainly.com/question/10725862
#SPJ1
It's the other name of Water and it's formula would be H2O
The question is incomplete, the complete question is;
Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. 0.100 m C6H12O6 0.100 m AlCl3 0.100 m NaCl 0.100 m MgCl2 They all have the same boiling point.
Answer:
AlCl3 0.100 m
Explanation:
Let us remember that the boiling point elevation is given by;
ΔTb = Kb m i
Where;
ΔTb = boiling point elevation
Kb = boiling point constant
m = molality of the solution
i = Van't Hoff factor
We can see from the question that all the solutions possess the same molality, ΔTb now depends on the value of the Van't Hoff factor which in turn depends on the number of particles in solution.
AlCl3 yields four particles in solution, hence ΔTb is highest for AlCl3 . The solution having the highest value of ΔTb also has the highest boiling point.