Answer:
1. The α particles were repelled by electrons.
Explanation:
The gold foil experiment was performed by Rutherford and his research group in 1911 (at the beginning of the 20th century). In this experiment, α particles were bombed to gold foils, and films were placed surround it to collect the particles.
It was observed that most of the particles passed through of the foil undeflected, and for that, Rutherford stated that the atom was a "huge empty". Some particles were deflected, because they're attracted to the electrons at the electrosphere, and a small number of particles were complete deflected to the origin because they chocked with the small positive nuclei.
Thus, the experiment suggested the nuclear model of the atom, called the planetary model, that was improved after by Bohr and other scientists in the quantum model.
The atomic number(Z) is equal to the number of protons to equal to number of electrons.
The number of neutrons is equal to atomic mass minus the atomic number
n=A-Z
For Zn^2+, Z=28, e=28
For iron, Z=25,A=55
The number of neutrons is 55-25=30
The charge is zero
For O^2-, Z=8+2=10, n=p=10
The number of neutrons is 16-10=6
For sulfur, Z=16,A=34
For S2-, Z=16+2=18, A=34
The charge is 2-
- The atomic number is the basis of the periodic table.
- It is equal to the number of protons.
- The number of neutrons is atomic mass minus atomic number.
To learn more about atomic number visit:
brainly.com/question/16858932
#SPJ1
Answer:
P1V1/T1= P2V2/T2
Explanation:
Combined gas law involves Boyle's law and Charles law altogether with the formula of Boyle's law as P1V1=P2V2
formula for charles law as V1/T1=V2/T2
so when combined form P1V1/T1=P2V2/T2
Answer:
The atomic mass of the boron atom would be <em>10.135</em>
Explanation:
This is generally known as relative atomic mass.
Relative atomic mass or atomic weight is a physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass of 1/12 of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless; hence the value is said to be relative and does not have a unit.
<em>Note that the relative atomic mass of atoms is not always a whole number because of it being isotopic in nature.</em>
- <em>Divide each abundance by 100 then multiply by atomic mass</em>
- <em>Do that for each isotope, then add the two result. Thus</em>
Relative atomic mass of Boron = (18.5/100 x 11) + (81/100 x 10)
= 2.035 + 8.1
= 10.135