Answer: 20.4752789138x x 10^23 atoms
To count how many atoms in moles you need to know Avogadro's number. Avogadro's number dictate that for every mole there is 6.022140857 × 10^23 molecule/atoms.
Then 3.4 moles of helium will be 3.4x 6.022140857 x 10^23 atoms= 20.4752789138x x 10^23 atoms
A. Acceleration.
acceleration is m/s^2. speed is m/s
Answer:
v = 3×10^8 m/s
s= 384,400 km= 3.84×10^8 m/s
t = ?
v = s/t = 2s/t
t = 2s/v
t = (2×3.84×10^8) ÷ 3×10^8
t = 2.56 seconds
Explanation:
Earth's moon is the brightest object in our
night sky and the closest celestial body. Its
presence and proximity play a huge role in
making life possible here on Earth. The moon's gravitational pull stabilizes Earth's wobble on its axis, leading to a stable climate.
The moon's orbit around Earth is elliptical. At perigee — its closest approach — the moon comes as close as 225,623 miles (363,104 kilometers). At apogee — the farthest away it gets — the moon is 252,088 miles (405,696
km) from Earth. On average, the distance fromEarth to the moon is about 238,855 miles (384,400 km). According to NASA , "That means 30 Earth-sized planets could fit in between Earth and the moon."
Answers are:
(1) KE = 1 kg m^2/s^2
(2) KE = 2 kg m^2/s^2
(3) KE = 3 kg m^2/s^2
(4) KE = 4 kg m^2/s^2
Explanation:
(1) Given mass = 0.125 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.125 * (16)
KE = 1 kg m^2/s^2
(2) Given mass = 0.250 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.250 * (16)
KE = 2 kg m^2/s^2
(3) Given mass = 0.375 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.375 * (16)
KE = 3 kg m^2/s^2
(4) Given mass = 0.500 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.5 * (16)
KE = 4 kg m^2/s^2