<span>1.an electric is induced when you move a magnet through a coil wire
2.a greater electric current is induced if you add more loops of wire</span>
(A) We can solve the problem by using Ohm's law, which states:

where
V is the potential difference across the electrical device
I is the current through the device
R is its resistance
For the heater coil in the problem, we know

and

, therefore we can rearrange Ohm's law to find the current through the device:

(B) The resistance of a conductive wire depends on three factors. In fact, it is given by:

where

is the resistivity of the material of the wire
L is the length of the wire
A is the cross-sectional area of the wire
Basically, we see that the longer the wire, the larger its resistance; and the larger the section of the wire, the smaller its resistance.
Answer:
B. +5.75 m/s
Explanation:
When there are two bodies, a and b, whose velocities measured by a third observer (in this case, the ground) are
and
respectively, the relative velocity of B with respect to A is given by:

Thus, the velocity of the girl relative to the lawnmower is:

Answer:
Moreover, Boss says that even if Jupiter is proven to have a core, the planet still could have formed that core through disk instability. Enough dust could have collected and cemented together in the dense gas to form a core many times larger than the size of the Earth.
Explanation:
The same is true of most other objects in the solar system — except Jupiter. The gas giant is so big that it pulls the center of mass between it and the sun, also known as the barycenter, some 1.07 solar radii from the star's center — which is about 30,000 miles above the sun's surface.
69,911 km
69,911 kmJupiter/Radius