Answer:
Cl
Explanation:
The element Cl will have the strongest ionization energy from the given choices. Most non-metals have higher ionization energy compared to metals.
Ionization energy is the energy required to remove the most loosely held electron from the gaseous phase of an atom.
- As you go from left to right on the periodic table, it increases progressive
- From top to bottom, the ionization energy reduces significantly.
- The attractive force between the protons in the nucleus and the electrons plays a very important role.
- In metals, they have very large atomic radius, the attractive force on the outer electrons is very weak.
- This is not the case in non-metals
For #1, I'd say it's "It will usually bond to multiple atoms which can provide a total of 4 additional electrons."
2. Ionic (I'm quite certain because anions/cations (-1 & +1) are Ionic from what I recall, if that's true it's Ionic.
3. "comparison of the associated families to which the elements belong" and
"the difference in electronegativities" are what I would choose, as I mentioned in a comment earlier.
If I'm wrong let me know, but I am at least 80% sure that these responses are correct from what I remember in Chemistry.
Answer:
40 moles of O₂
30 moles of CO₂
Explanation:
Given parameters:
Number of moles of C₃H₄ = 10moles
Unknown:
Number of moles of CO₂ = ?
Solution:
The number of moles helps to understand and make quantitative measurements involving chemical reactions.
We start by solving this sort of problem by ensuring that the given equation is properly balanced;
C₃H₄ + 4O₂ → 3CO₂ + 2H₂O
We can clearly see that all the atoms are conserved.
Now, we work from the known to unknown. We know the number of moles of C₃H₄ to be 10moles;
1 mole of C₃H₄ reacted with 4 moles of O₂
10 moles of C₃H₄ will react with 10 x 4 = 40moles of O₂
1 mole of C₃H₄ will produce 3 moles of CO₂
10 moles of C₃H₄ will produce 10 x 3 = 30moles of CO₂
Answer:
8.3028894e-22
Explanation:
5x10^2 atoms/1 x 1 mol/6.022x10^23
Yes, the atomic radius increases as you move down a group of elements.
this is true
going down leads to valence electrons that are further away from nucleus -> less electrostatic attraction -> less pull towards nuc. -> greater radius/volume taken