Answer:
The required steady force of each rocket is 28.79 N
Explanation:
mass of the satellite, M=3900 kg
radius, r=4.3 m
mass of rocket, m=210 kg
time, t=5.4 min
Moment of Inertia:
I = 1/2 (Mr^2) + 4mr^2
I = 1/2 ( 3900* (4.3)^2) + 4 (210)*(4.3)^2
I = 51587.1 kg m^2
the angular acceleration is:
a= w/t
here w= 2*π*30
so,
a= 2*π*30 / 5.4* 3600
a=0.0096 rad/ s^2
the Torque becomes:
T=I*a = 4r*F
( 51587.1 )*(0.0096) = 4*4.3* F
F= 28.79 N
the required steady force of each rocket is 28.79 N
learn more about steady force here:
<u>brainly.com/question/13841147</u>
<u />
#SPJ4
<u>Answer:</u>
At time 2t the paint ball is at 8 cm to the right and 16 cm to the bottom
<u>Explanation:</u>
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
Considering the horizontal motion of paint ball
Distance traveled during time t = 4 cm
Initial velocity = u m/s
Acceleration = 0 
So 
Now at time 2t,

So horizontal distance traveled in time 2t = 8 cm to the right
Now considering the vertical motion of paint ball
Distance traveled during time t = 4 cm
Initial velocity = 0 m/s
Acceleration = -g 

At time 2t,

So vertical distance traveled in time 2t = 16 cm to the bottom
The trickiest part of this problem was making sure where the Yakima Valley is.
OK so it's generally around the city of the same name in Washington State.
Just for a place to work with, I picked the Yakima Valley Junior College, at the
corner of W Nob Hill Blvd and S16th Ave in Yakima. The latitude in the middle
of that intersection is 46.585° North. <u>That's</u> the number we need.
Here's how I would do it:
-- The altitude of the due-south point on the celestial equator is always
(90° - latitude), no matter what the date or time of day.
-- The highest above the celestial equator that the ecliptic ever gets
is about 23.5°.
-- The mean inclination of the moon's orbit to the ecliptic is 5.14°, so
that's the highest above the ecliptic that the moon can ever appear
in the sky.
This sets the limit of the highest in the sky that the moon can ever appear.
90° - 46.585° + 23.5° + 5.14° = 72.1° above the horizon .
That doesn't happen regularly. It would depend on everything coming
together at the same time ... the moon happens to be at the point in its
orbit that's 5.14° above ==> (the point on the ecliptic that's 23.5° above
the celestial equator).
Depending on the time of year, that can be any time of the day or night.
The most striking combination is at midnight, within a day or two of the
Winter solstice, when the moon happens to be full.
In general, the Full Moon closest to the Winter solstice is going to be
the moon highest in the sky. Then it's going to be somewhere near
67° above the horizon at midnight.
All of the rivers in the United States are not monitored closely for pollution levels.
The statement in the question is False
<h3><u>
Explanation:</u></h3>
Not all rivers in the United States are closely monitored for their pollution levels. There are volunteers who take responsibility of checking water bodies such as lakes, rivers, streams etc. They take the next step required after finding a water body contaminated.
But to say that all the rivers receive the same amount of attention and action is incorrect. To ensure that all the rivers are clean and pollution free, it would require a lot of man power in the said department which would collect the water samples from all these rivers and send it to labs for checking the pollution level of the particular river. It can be said that the rivers which are situated beside an industrial site, close to a town, will be the priority for checking pollution levels as it would directly cause harm to a small set of population if the toxicity is at an increased level.
Answer:
atoms and molecules
Explanation:
as opposed to being continuous or just including particles). On the following page, the idea is stated as one of four concepts in Dalton's theory: “All matter is composed of tiny, indivisible particles called atoms”