1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
2 years ago
6

What is the highest degrees above the horizon the moon ever gets during the year in the Yakima Valley ?

Physics
1 answer:
Ivahew [28]2 years ago
5 0

The trickiest part of this problem was making sure where the Yakima Valley is.
OK so it's generally around the city of the same name in Washington State.

Just for a place to work with, I picked the Yakima Valley Junior College, at the
corner of W Nob Hill Blvd and S16th Ave in Yakima.  The latitude in the middle
of that intersection is 46.585° North.  <u>That's</u> the number we need.

Here's how I would do it:

-- The altitude of the due-south point on the celestial equator is always
(90° - latitude), no matter what the date or time of day.

-- The highest above the celestial equator that the ecliptic ever gets
is about 23.5°. 

-- The mean inclination of the moon's orbit to the ecliptic is 5.14°, so
that's the highest above the ecliptic that the moon can ever appear
in the sky.

This sets the limit of the highest in the sky that the moon can ever appear.

90° - 46.585° + 23.5° + 5.14° = 72.1° above the horizon .

That doesn't happen regularly.  It would depend on everything coming
together at the same time ... the moon happens to be at the point in its
orbit that's 5.14° above ==> (the point on the ecliptic that's 23.5° above
the celestial equator).

Depending on the time of year, that can be any time of the day or night.

The most striking combination is at midnight, within a day or two of the
Winter solstice, when the moon happens to be full.

In general, the Full Moon closest to the Winter solstice is going to be
the moon highest in the sky.  Then it's going to be somewhere near
67° above the horizon at midnight.


You might be interested in
If a roller coaster train has a potential energy of 1,500 J and a kinetic energy of 500 J as it starts to travel downhill, what
DENIUS [597]

Its total mechanical energy is <em>2,000 J</em>.

We don't have enough information to say anything about its heat energy, its chemical energy, or the energy due to any electrical charge it may be carrying or any magnetic field it may have.

6 0
2 years ago
What resistance would produce a current of 200A with a potiential difference of 200V?
viktelen [127]
Aw, I hate physics, is this on Apex?

Resistance can be calculated with the information given in the question.
Equation for Resistance: R = V/I
V (voltage) = 200 Volts
I (current) = 200 Amps

So 200 divided by 200 = freaking 1

Answer: R = 1 (ohms)

Hope this Helps!

5 0
3 years ago
The outer layer of cable on a cable reel is 16.2 cm from the center of the reel. The reel is initially stationary and can rotate
ahrayia [7]

Answer:

B. w=12.68rad/s

C. α=3.52rad/s^2

Explanation:

B)

We can solve this problem by taking into account that (as in the uniformly accelerated motion)

\theta=\omega_{0}t+\frac{1}{2}\alpha t^{2}\\\theta = \frac{s}{r}      ( 1 )

where w0 is the initial angular speed, α is the angular acceleration, s is the arc length and r is the radius.

In this case s=3.7m, r=16.2cm=0.162m, t=3.6s and w0=0. Hence, by using the equations (1) we have

\theta=\frac{3.7m}{0.162m}=22.83rad

22.83rad=\frac{1}{2}\alpha (3.6s)^2\\\\\alpha=2\frac{(22.83rad)}{3.6^2s}=3.52\frac{rad}{s^2}

to calculate the angular speed w we can use\alpha=\frac{\omega _{f}-\omega _{i}}{t _{f}-t _{i}}\\\\\omega_{f}=\alpha t_{f}=(3.52\frac{rad}{s^2})(3.6)=12.68\frac{rad}{s}

Thus, wf=12.68rad/s

C) We can use our result in B)

\alpha=3.52\frac{rad}{s^2}

I hope this is useful for you

regards

3 0
3 years ago
Read 2 more answers
A sample of an ideal gas has a volume of 2.37 L at 2.80×102 K and 1.15 atm. Calculate the pressure when the volume is 1.68 L and
iogann1982 [59]

Answer:

p_2 = 1.76 atm

Explanation:

given data:

v_1 = 2.37 L

v_2 = 1.68 L

p_1 =1.15 atm

p_2 = ?

t_1 = 280 K

t_2 = 304 K

from Gas Law Equation

, WE HAVE

\frac{p_1 v_1}{t_1} =\frac{p_2 v_2}{t_2}

Putting the values

\frac{1.15*2.37}{280}  =\frac{p_2 *1.68}{304}

9.733*10^{-3} = \frac{p_2 *1.68}{304}

9.733*10^{-3}*304 = p_2*1.68

\frac{9.733*10^{-3}*304}{1.68} =p_2

p_2= 1.76 atm

7 0
3 years ago
Jake calculates that the frequency of a wave is 500 hertz and that the wave is moving at 1,250 m/s. What is the wavelength of th
Neko [114]
Frequency (f) = 500 hz (SI)
Velocity (V) = 1250 m/s (SI)
Wavelength (Lambda) = ? meters

v =  \lambda \times f
1250 =  \lambda \times 500 \\ \lambda = 1250 \div 500 \\ \lambda = 2.5 \: meters
6 0
3 years ago
Other questions:
  • For an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off
    15·1 answer
  • Is loudness affected by change in frequency? Explain<br><br><br> I will mark you the brainliest
    11·1 answer
  • Physical Science
    5·1 answer
  • A bumblebee is flying to the right when a breeze causes the bee to slow down with a constant leftward acceleration of magnitude
    13·1 answer
  • How much force is required to accelerate a 2 kg mass at 3 m/s2
    5·2 answers
  • A wave has a wavelength of 3.3 m and a speed of 5.6 m/s. What is the frequency of this wave
    9·1 answer
  • What is the current (Amps) of a circuit with a 9V battery and a 18Ω lamp?
    8·1 answer
  • A cross country skier moves 32 m north, then 65 m south, and finally 16 m north. What is the distance? What is the displacement
    6·1 answer
  • Review. Consider the deuterium-tritium fusion reaction with the tritium nucleus at rest:
    13·1 answer
  • a tire has a tread pattern with a crevice every 4.00 cm. each crevice makes a single vibration as the tire moves. what is the fr
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!