It's called cellular differentiation. I think.
Answer:
The displacement was 320 meters.
Explanation:
Assuming projectile motion and zero initial speed (i.e., the object was dropped, not thrown down), you can calculate the displacement using the kinematic equation:

The displacement was 320 meters.
Our bodies emit heat, and nerve endings in our skin can detect it.
Our eyes can detect visible light, but our bodies don't emit that.
Answer:
1.
Jupiter is the largest planet in the solar system. (Image credit: NASA)
The largest planet in the solar system, the gas giant Jupiter is approximately 318 times as massive as Earth. If the mass of all of the other planets in the solar system were combined into one "super planet," Jupiter would still be two and a half times as large.
2.Rotation of Jupiter
[/caption]
Jupiter has the fastest rotation of all the planets in the Solar System, completing one rotation on its axis every 9.9 hours.
3.Jupiter, the King of the Planets, is a gas giant, which means that it's made mostly of gases like hydrogen and helium, and that it doesn't have a solid surface in the way that rocky planets like Earth do. With a temperature of 130 K (-140 C, -230 F), it's so cold that it gives off most of its energy in the infrared. In fact, Jupiter gives off almost twice as much heat as it receives from the Sun. It's able to do this because it has its own internal heat source, powered by the slow gravitational collapse that started when the planet first formed. Astronomers estimate that Jupiter is currently shrinking by almost 2 cm per year
The alpha line in the Balmer series is the transition from n=3 to n=2 and with the wavelength of λ=656 nm = 6.56*10^-7 m. To get the frequency we need the formula: v=λ*f where v is the speed of light, λ is the wavelength and f is the frequency, or c=λ*f. c=3*10^8 m/s. To get the frequency: f=c/λ. Now we input the numbers: f=(3*10^8)/(6.56*10^-7)=4.57*10^14 Hz. So the frequency of the light from alpha line is f= 4.57*10^14 Hz.