Hi!
The correct option would be A.
This is because the displacement reaction would take place as follows
Ca + ZnCl2 --> CaCl2 + Zn
A displacement reaction is one in which a substitution occurs, as the more reactive element in the mixture replaces one that is less reactive.
In the electrochemical series, we find Ca higher than Zn, which is indicative of Ca being more reactive, and having the capacity to displace Zn to form a compound.
Option D would be incorrect as no such substitution occurs.
Option B would be incorrect because again, there is no substitution occurring, and also because two metals alone (Ca and Zn in our case) can never react to form a compound.
Option C would be incorrect because it is not possible because CaCl and ZnCl are forms that are too unstable to exist due to an overall positive charge.
Hope this helps!
Answer:
The answer is below
Explanation:
Newton's second law of motion states that the force applied to an object is directly proportional to the rate of change of momentum with respect to time, going in the same direction as the force.
Let F = force, m = mass of object, v = velocity of object, mv = momentum.
F = d/dt(mv) = m(dv / dt) = ma; a = acceleration.
Let us assume that the object starts from rest to 5 m/s within 1 seconds, hence:
F = m(dv / dt)
200 N = m[(5 m/s - 0 m/s) / (1 s)]
200 = 5m
m = 40 kg
Answer:
Static Electricity.
Explanation:
Static electricity is defined as 'an electric charge that has built up on an insulated body, often due to friction.' <u> It is an outcome of the disparity among the positive, as well as, negative charges residing in a body</u> or object and causes the charge to build up on the surface of the body. The accumulation of electric charges on the objects like wool, hair, silk, plastic, etc. causes them to possess static electricity. These charges stay on the surface until it is discharged or released through a source. Thus, <u>'static electricity</u>' is the correct answer.
Convert mole to gram by multiplying the molar mass of sodium
0.500mol Na x 22.990g = 11.495g of Na