Answer:
Stopwatches versus clocks. To improve reliability repeat the experiment multiple times according to an identical procedure. Record these steps so the experiment can be repeated at any time
Explanation:
Answer: There are 7.4 moles of helium gas present in a 1.85 liter container at the same temperature and pressure.
Explanation:
Given:
= 2.25 L,
= 9.0 mol
= 1.85 L,
= ?
Formula used to calculate the moles of helium are as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that there are 7.4 moles of helium gas present in a 1.85 liter container at the same temperature and pressure.
<h3><u>Answer;</u></h3>
Directly proportional
<h3><u>Explanation;</u></h3>
- <em><u>Concentration is one of the factors that determine the rate of a reaction. Reaction rates increases with increase in the concentration of the reactants, which means they are directly proportional.</u></em>
- An increase in the concentration of reactants produces more collisions and thus increasing the rate at which the reaction is taking place. Therefore, <u>Increasing the concentration of a reactant increases the frequency of collisions between reactants and will cause an increase in the rate of reaction.</u>
Number of moles of FeCl2 used = mass/ molar mass
Number of moles = 507/126.751 = 4.
If one mole of Fe reacts with two moles of sodium
Then 4 moles of Fe produces 8 moles of sodium.
Number of moles of sodium = mass/molar mass
Molar mass of sodium chloride = 23 +35.5 = 58.5 g/mol
Hence mass = 8 * 58.5 = 468 g. Hence Option A.