1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novosadov [1.4K]
3 years ago
8

What is the net force on this object?

Physics
2 answers:
vaieri [72.5K]3 years ago
8 0

Answer:

200 newtons

Explanation:

because the sub air that would pull the force down by all of the mass of the sub air go down by that 400 newtons there for your anwer is 200 newtons. because 600-400=200

likoan [24]3 years ago
6 0

Answer:

200N

Explanation:

The net force or resultant force on the object is obtained by adding all the forces acting on it.

In this case we have an upward force and a downward force, since they go in different directions they must have a different sign: we will define upward as positive and downward as negative:

F_{air} = 400N

F_{grav}=-600N

The sign only to indicate that they are going in opposite directions, so the resulting force:

F=F_{air}+F_{grav}=400N+(-600N)=400N-600N=-200N

The net force acting on the object is 200N. (downwars due to the negative sign).

You might be interested in
When a hot and cold object are placed in contact, the hot one loses energy. Does this violate energy conservation? Why or why no
blsea [12.9K]

Answer:

This does not violate the conservation of energy.

Explanation:

This does not violate the conservation of energy because the hot body gives energy in the form of heat to the colder body, this second absorbs energy. This will be the case until both bodies reach the same temperature, reaching thermal equilibrium and reducing the transfer of thermal energy. In this way the energy was only transferred from one body to another but the total energy of the system (body 1 plus body 2) will be the same as in the beginning, respecting the principle of conservation of energy or also called the first principle of thermodynamics .

The part of physics that studies these processes is in turn called heat transfer or heat transfer or thermal transfer. Heat transfer occurs whenever there is a thermal gradient or when two systems with different temperatures come into contact. The process persists until thermal equilibrium is reached, that is, until temperatures are equalized. When there is a temperature difference between two objects or regions close enough, the heat transfer cannot be stopped, it can only be slowed down.

8 0
4 years ago
If the statement is true, select True. If it is false, select False.
RUDIKE [14]

Answer:

false

Explanation:

6 0
3 years ago
You pull straight up on the string of a yo-yo with a force 0.35 N, and while your hand is moving up a distance 0.16 m, the yo-yo
jarptica [38.1K]

Answer:

a) 0.138J

b) 3.58m/S

c) (1.52J)(I)

Explanation:

a) to find the increase in the translational kinetic energy you can use the relation

\Delta E_k=W=W_g-W_p

where Wp is the work done by the person and Wg is the work done by the gravitational force

By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

Wp=(0.35N)(0.16m)=0.056J\\\\Wg=(0.062kg)(9.8\frac{m}{s^2})(0.32m)=0.19J\\\\\Delta E_k=W=0.19J-0.056J=0.138J

the change in the translational kinetic energy is 0.138J

b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

\Delta E_k=\frac{1}{2}mv_f^2-\frac{1}{2}mv_o^2

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

v_f=\sqrt{\frac{2}{m}}\sqrt{\Delta E_k+(1/2)mv_o^2}\\\\v_f=\sqrt{\frac{2}{0.062kg}}\sqrt{0.138J+1/2(0.062kg)(2.9m/s)^2}=3.58\frac{m}{s}

the new speed is 3.58m/s

c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

\frac{E_{fr}}{E_{fr}}=\frac{1/2I\omega_f^2}{1/2I\omega_o^2}=\frac{\omega_f^2}{\omega_o^2}\\\\\omega_f=\frac{v_f}{r}\\\\\omega_o=\frac{v_o}{r}\\\\\frac{E_{fr}}{E_{fr}}=\frac{v_f^2}{v_o^2}=\frac{(3.58m/s)}{(2.9m/s)^2}=1.52J

hence, the change in Er is about 1.52J times the initial rotational energy

5 0
3 years ago
Read 2 more answers
The apparent weight of a student in alift is 564N . if the mass of the student is 60.3kg, what is the acceleration of the lift ?
Yuki888 [10]

Answer:

-.457 m/s^2

Explanation:

Actual weight =   60 .3 (9.81) = 591.54 N

Accel of lift changes this to    60.3 ( 9.81 - L)     where L - accel of lift

                                           60.3 ( 9.81 - L ) = 564

                                               solve for L = .457 m/s^2  DOWNWARD

                                                        so L = - .457 m/s^2

4 0
2 years ago
Can someone plz help me with this
Elena-2011 [213]
1st Law: Objects that are in motion tend to stay in motion. This motion can change with external forces. 

<span>If you were to stop pedaling on bike while in motion, you will notice that you will keep moving. This is because a moving body (you) has inertia. If there wasn't any friction between the tires and the ground, between the axles and wheel, any air resistance, or any other force that acts against you, then you could be coasting indefinitely! </span>

<span>2nd Law: Force is equal to the mass times acceleration. </span>

<span>When you pedal, you are applying a force onto the pedal. This force is then translated through tension to apply torque onto the wheel. Turning the wheel will make you accelerate in the lateral direction. </span>

<span>3rd Law: For every action, there is an equal and opposite reaction. </span>

<span>Without this, you could pedal and pedal, but you will be not go anywhere! It is essentially the friction between the tires and the ground that propels you forward. If the ground did not apply to the tire the same amount of force that the tire was applying to the ground, the tire would not "catch" and no friction would be applied. And if there was no third law, the weight of you and your bike would "sink" into the ground because the ground would not be applying a normal force back onto you.

hope this helps and if you have any questions just hmu and ask :)</span>
3 0
3 years ago
Other questions:
  • Which of the following describes a protective put?
    7·1 answer
  • Which object would have a LARGER gravitational force acting upon it? (assume the objects are at the same height above the Earth.
    12·2 answers
  • Gas hydrates are used ___
    13·2 answers
  • Two positive charges are equal. Which has more electric potential energy?
    7·2 answers
  • Two metal balls are the same size but one weighs twice as much as the other. The balls are dropped from the roof of a single sto
    9·1 answer
  • Work done(as a measure of energy)=force x distance. Use this equation to show that the SI base units of energy are kg m^2 s^-2
    5·1 answer
  • What brand is this please no links
    13·2 answers
  • How large a force is necessary to stretch a 4.0-mm-diameter steel wire from its original length by 1.0%?
    5·1 answer
  • How is kinetic energy turned into electricity?
    6·1 answer
  • A light spring obeys Hooke's law. The spring's unstretched length is 34.0 cm. One end of the spring is attached to the top of a
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!