Answer:
0.0468 g.
Explanation:
- The decay of radioactive elements obeys first-order kinetics.
- For a first-order reaction: k = ln2/(t1/2) = 0.693/(t1/2).
Where, k is the rate constant of the reaction.
t1/2 is the half-life time of the reaction (t1/2 = 1620 years).
∴ k = ln2/(t1/2) = 0.693/(1620 years) = 4.28 x 10⁻⁴ year⁻¹.
- For first-order reaction: <em>kt = lna/(a-x).</em>
where, k is the rate constant of the reaction (k = 4.28 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = t1/2 x 8 = 1620 years x 8 = 12960 year).
a is the initial concentration (a = 12.0 g).
(a-x) is the remaining concentration.
∴ kt = lna/(a-x)
(4.28 x 10⁻⁴ year⁻¹)(12960 year) = ln(12)/(a-x).
5.54688 = ln(12)/(a-x).
Taking e for the both sides:
256.34 = (12)/(a-x).
<em>∴ (a-x) = 12/256.34 = 0.0468 g.</em>
Answer:
Number of molecules = 1.8267×10^20
Explanation:
From the question, we can deuced that the gases behave ideally, the we can make use of the ideal gas equation, which is expressed below;
PV = nRT
where
P =pressure
V =volume
n = the number of moles
R is the gas constant equal to 0.0821 L·atm/mol·K
T is the absolute temperature
Given:
P = 6.75 atm;
T = 290.0 k,
; V = 1.07 cm³ = 0.001 L
( 6.75 atm)(0.00107 L) = n(0.0821 L·atm/mol·K)(290K)
n = 3.0335167*10^-4 moles
But there are 6.022×10²³ molecules in 1 mole,
Number of molecules = 1.8267×10^20
Answer:
MOLAR MASS = 32 g/mol
Explanation:
Condition of standard temperature and pressure(STP) are as follow:
Temperature = 273 K
Pressure = 1 atm (or 100000 Pa)
Here atm is atmosphere and Pa is Pascal
STP conditions arte used for measuring gas density and volume using Ideal Gas Law.Here 1 mole of ideal gas occupies 22.4 L of volume.
According toi Ideal Gas Equation :
PV = nRT
where P = pressure, n= number of moles, V = volume ,R= Ideal Gas Constant and T= temperature

From question:
V=280 ml = 0.28 L
P = 1 atm
R=0.08205 L atm/K mol
T=273 K
Putting values in above formula :

n = 0.0125 moles
Now 

given mass = 0.4 g (given)

On solving we get:
Molar mass = 32 g/mol