Answer:
9.877 m/s^2
Explanation:
The acceleration can be computed from ...
d = (1/2)at^2
(1600 m) = (1/2)a(18 s)^2
a = (1600/162) m/s^2 ≈ 9.877 m/s^2
Once the atomic number of an atom is known, the number of electrons can be deduced depending on if the atom is an ion or a neutral one.
<h3>Atomic number</h3>
The atomic number of an atom is the number of protons in the nucleus of the atom.
For atoms that are neutral, that is, no net charges, the number of protons is always equal to the number of electrons. In other words, the positive charges always balance the negative charges in neutral atoms.
Thus, if the atomic number of a neutral atom is 6, for example, the proton number will also be 6. Since the proton must balance the electron, the number of electrons will also be 6.
More on atomic numbers can be found here; brainly.com/question/17274608
a) 32 kg m/s
Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

where
is the momentum of the spring. For the conservation of momentum,

b) -32 kg m/s
The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

c) 64 N
The change in momentum is equal to the product between the average force and the time of the interaction:

Since we know
, we can find the magnitude of the force:

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.
d) The force calculated in the previous step (64 N) is larger than the force of 32 N.
Answer:
the plot structure defines a story's setting
Answer:
Final velocity, v = 0.28 m/s
Explanation:
Given that,
Mass of the model, 
Speed of the model, 
Mass of another model, 
Initial speed of another model, 
To find,
Final velocity
Solution,
Let V is the final velocity. As both being soft clay, they naturally stick together. It is a case of inelastic collision. Using the conservation of linear momentum to find it as :



V = 0.28 m/s
So, their final velocity is 0.28 m/s. Hence, this is the required solution.