Answer:41.991ml
Explanation:
Equations: 2 H2O → 4H+ + 4e + O2 OXIDATION
2 H+ + 2e → H2 REDUCTION
Electrolysis is the chemical decomposition of compounds when electricity is made to pass through a molten compound or solution.
from the oxidation reaction:
1moles of oxygen requires 4moles of electrons to be discharged at the product
F=96500C/mol
Quantity of charge Q=It
=60*60*0.201A
Q=723.6C
Mole=Q/(F*mole ratio of electron)
Mole= 723.6/(4*96500)
Mole=((1809)/(965000))
M=0.0018746114
M1/M2=V1/V2
1/0.00187=22.4dm^3/V2
V2=22.4*0.00187
V2=0.04199129534dm^3
41.99129534ml
The hottest would be the O type and the coolest is M
The following expression is applicable:
Max. inductor energy = Max. capacitor energy
Where;
Max. inductor energy = LI^2/2, with L = 20.0 mH, I = 0.400 A
Max. capacitor energy = CV_max^2/2, C = 0.150 micro Faraday, V_max = Max. potential difference
Substituting;
LI^2/2 = CV^2/2
LI^2 = CV^2
V^2 = (LI^2)/C
V_max = Sqrt [(LI^2)/C] = Sqrt [(20*10^-3*0.4^2)/(0.15*10^-6)] = 146.06 V
There are three kinds of forces within the atom:
i) Electromagnetic force of attraction between the electrons and protons
ii) Electromagnetic force of repulsion between the protons or weak nuclear force
iii) Strong nuclear force between the electrons and protons
<h3>What is
nuclear force?</h3>
The electromagnetic force of attraction:
- Electrons circle in the orbits above the nucleus. There exists an electromagnetic force of pull between the electrons and protons. That’s why electrons do not depart the atom.
Weak nuclear force:
- It is an electromagnetic significance of revulsion between the protons in the nucleus of the atoms.
Strong nuclear force:
- This force is strongest from all the fundamental details and exists between the protons and neutrons in the nucleus of an atom. This pressure overcomes the weak nuclear force and does not allow protons to stray out.
To learn more about nuclear force, refer to:
brainly.com/question/8695581
#SPJ4
Electromagnetic waves<span> transfer energy without going through a medium. ... Sometimes, a </span>transverse wave<span> and a </span>longitudinal wave can combine to form<span>another </span>kind<span> of </span>wave<span> called a surface </span>wave<span>. </span>Transverse Waves<span>. </span>Waves<span> in which the particles vibrate in an up-and-down motion
</span>