Answer:
Compared with the current in the first coil, the current in the second coil is unchanged.
Explanation:
All coils, inductors, chokes and transformers create a magnetic field around themselves consist of an Inductance in series with a Resistance forming an LR Series Circuit.
The steady state of current in the LR circuit is:
I= V/R (1 - e^-Rt/L)
Where I= current
R= Resistance
V= Voltage
Where R/L is the time constant.
For a conducting wire, it has a very small resistance. The time constant will be in microseconds. The current will be in a steady state after few second. The current is independent on the inductance and dependent on the resistance. The length of wire and the resistance here are the same. Therefore, the current remains unchanged.
Answer:
Matter is anything that has mass and occupies space. The flame itself is a mixture of gases (vaporized fuel, oxygen, carbon dioxide, carbon monoxide, water vapor, and many other things) and so is matter. <em><u>The light produced by the flame is energy, not matter.</u></em>
<em><u></u></em>
Answer:
Therefore % increase in velocity is 18.23 %
Explanation:
we use the equality of mass flow rate and the areas

The percentage increase in velocity is
Δ v% =
100%
=
.100%
=
. 100%
= Therefore % increase in velocity is 18.23 %
<span>118 C
The Clausius-Clapeyron equation is useful in calculating the boiling point of a liquid at various pressures. It is:
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
where
Tb = Temperature boiling
R = Ideal Gas Constant (8.3144598 J/(K*mol) )
P = Pressure of interest
Hvap = Heat of vaporization of the liquid
T0, P0 = Temperature and pressure at a known point.
The temperatures are absolute temperatures.
We know that water boils at 100C at 14.7 psi. Yes, it's ugly to be mixing metric and imperial units like that. But since we're only interested in relative pressure differences, it's safe enough. So
P0 = 14.7
P = 14.7 + 12.3 = 27
T0 = 100 + 273.15 = 373.15
And for water, the heat of vaporization per mole is 40660 J/mol
Let's substitute the known values and calculate.
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
Tb = 1/(1/373.15 K - 8.3144598 J/(K*mol) ln(27/14.7)/40660 J/mol)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K ln(1.836734694)/40660)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K 0.607989372/40660)
Tb = 1/(0.002679887 1/K - 5.055103194 1/K /40660)
Tb = 1/(0.002679887 1/K - 0.000124326 1/K)
Tb = 1/(0.002555561 1/K)
Tb = 391.3034763 K
Tb = 391.3034763 K - 273.15
Tb = 118.1534763 C
Rounding to 3 significant figures gives 118 C</span>
She used 1 cup less than the amount that she made when she decided to make pancakes. We have no idea how much she had to begin with.