1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tangare [24]
3 years ago
7

18.5 miles per second (30 km/sec). Choose the Earth movement that best relates to this description.

Physics
2 answers:
Vladimir79 [104]3 years ago
6 0

Answer:

Earth orbits the SUn

Explanation:

hodyreva [135]3 years ago
4 0

Answer:

Earth orbits the Sun

Explanation:

You might be interested in
Two sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 7.00 cm, a wave number o
lys-0071 [83]

Answer:

0.99 m

Explanation:

Parameters given:

Amplitude, A = 7.00cm

Wave number, k = 3.00m^-1

Angular Frequency, ω = 2.50Hz

Period = 6.00 s

Phase, ϕ = π/12 rad

Note: All parameters are the same for both waves except the phase.

Wave 1 has a wave function:

y1(x, t) = Asin(kx - ωt)

y1(x, t) = 7sin(3x - 2.5t)

Wave 2 has a wave function:

y2(x, t) = Asin(kx - ωt + ϕ)

y2(x, t) = 7sin(3x - 2.5t + π/12)

π is in radians.

When Superposition occurs, the new wave is represented by:

y(x, t) = 7sin(3x - 2.5t) + 7sin(3x - 2.5t + π/12)

y(x, t) = 7[sin(3x - 2.5t) + sin(3x - 2.5t + π/12)]

Using trigonometric function:

sin(a) + sin(b) = 2cos[(a - b)/2]sin[(a + b)/2]

Where a = 3x - 2.5t, b = 3x - 2.5t + π/12

We have that:

y(x, t) = (2*7)[cos(π/24)sin(3x - 2.5t + π/24)]

Therefore, when x = 0.53cm and t = 2s,

y(x, t) = (2*7)[cos(π/24)sin{(3*0.53) - (2.5*2)+ π/24}]

y(x, t) = 14 * 0.9914 * 0.0713

y(x, t) = 0.99 m

The height of the resultant wave is 0.99cm

5 0
3 years ago
A stone is thrown vertically upward with a speed of 15.5 m/s from the edge of a cliff 75.0 m high .
rjkz [21]

a) 2.64 s

We can solve this part of the problem by using the following SUVAT equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the stone

u is the initial velocity

t is the time

a is the acceleration

We must be careful to the signs of s, u and a. Taking upward as positive direction, we have:

- s (displacement) negative, since it is downward: so s = -75.0 m

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a= g = -9.8 m/s^2 (acceleration of gravity)

Substituting into the equation,

-75.0 = 15.5 t -4.9t^2\\4.9t^2-15.5t-75.0 = 0

Solving the equation, we have two solutions: t = -5.80 s and t = 2.84 s. Since the negative solution has no physical meaning, the stone reaches the bottom of the cliff 2.64 s later.

b) 10.4 m/s

The speed of the stone when it reaches the bottom of the cliff can be calculated by using the equation:

v=u+at

where again, we must be careful to the signs of the various quantities:

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a = g = -9.8 m/s^2

Substituting t = 2.64 s, we find the final velocity of the stone:

v = 15.5 +(-9.8)(2.64)=-10.4 m/s

where the negative sign means that the velocity is downward: so the speed is 10.4 m/s.

c) 4.11 s

In this case, we can use again the equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the package

u is the initial velocity

t is the time

a is the acceleration

We have:

s = -105 m (vertical displacement of the package, downward so negative)

u = +5.40 m/s (initial velocity of the package, which is the same as the helicopter, upward so positive)

a = g = -9.8 m/s^2

Substituting into the equation,

-105 = 5.40 t -4.9t^2\\4.9t^2 -5.40 t-105=0

Which gives two solutions: t = -5.21 s and t = 4.11 s. Again, we discard the first solution since it is negative, so the package reaches the ground after

t = 4.11 seconds.

5 0
3 years ago
Read 2 more answers
Determine the angular velocity ω of the telescope as it orbits around the Sun.
lara31 [8.8K]
The JWST is postioned about 1.5 million kilometers from the earth on the side facing away from the sun
5 0
2 years ago
How much force is required to accelerate a 12 kg mass at 5 m/s 2
Savatey [412]

Answer:

60 N

Explanation:

This is just Newton's Second Law

F = m*a

F = ?

m = 12 kg

a = 5 m/^2

F = 5*12 = 60 Newtons

4 0
2 years ago
A rightward force of 12.0 N is applied to a 2.0-kg object to accelerate it across a horizontal
ad-work [718]

Answer:

below

Explanation:

Net accelerating force becomes  12-8 = 4 N

F = ma

4 = 2 * a

a = 2 m/s^2

8 0
1 year ago
Other questions:
  • Which of the following is true about wedges?
    15·1 answer
  • A ball with a horizontal speed of 1.0m/s rolls off a bench 2.0 m high. (a) how long will the ball take to reach the floor? (b) h
    8·1 answer
  • Boron (B) has an atomic number of 5 and an atomic mass of 11. Boron has _____.
    15·2 answers
  • A force of 3600 N is exerted on a piston that has an area of 0.030 m2. What force is exerted on a second piston that has an area
    11·2 answers
  • What is peer review.why is it important​
    11·2 answers
  • You are making a telephone out of two aluminum cans and some string. You can choose between two types of string: a 2-m length of
    12·1 answer
  • 2. The amount of charge and the distance from the charge determine the...
    15·2 answers
  • 1. Density = 13.5 g/mL<br> Mass = 151 grams<br> Volume =<br> What is the volume
    6·2 answers
  • Describe how radio waves are different from sound waves.
    8·2 answers
  • What does a snow leopard eat?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!