Answer:
The frequency of the sound note as heard = 429 Hz
Explanation:
The frequency of sound waves as heard from a distance for a sound wave coming towards one at v₀ m/s and whose real frequency is f₀ is given by
+f = f₀/[1 - (v₀/v)]
+f = frequency of sound as heard from the distance away = ?
f₀ = real frequency of sound = 401 Hz
v₀ = velocity at which the sound source is moving towards the reference point = 23.0 m/s
v = velocity of sound waves = 343 m/s
+f = 401/[1 - (23/343)]
+f = 429 Hz
Answer:
You are pulled towards that building. At the same time, that building is pulled towards you. Neither object creates enough gravitational force to really do anything. That is why you never notice any affect by either body, (you and a building).
Explanation:
You will surely get attracted towards the building.But it takes a lot of time depending on their masses.
This happens only when you are away from earth with that building.
Both of you will get attracted to it
if a third party with mass more than you or building is with you.
If it is on the earth.. Then the gravity between you and the building is negligible compared to the earth.Hence you will not get attracted towards the building in this case.
You're talking about a <em>tornado</em>.
It's not so much the low pressure that's so dangerous in the center of a tornado. It's more a matter of the high winds that are <em>caused </em>by the low pressure.
Answer:
Explanation:
The equation for centripetal acceleration is .
We know the wheel turns at 45 rpm, which means 0.75 revolutions per second (dividing by 60), so our frequency is f=0.75Hz, which is the inverse of the period T.
Our velocity is the relation between the distance traveled and the time taken, so is the relation between the circumference and the period T, then we have:
Putting all together:
The missing diagram is in the attachments.
Answer: X: positive Y: positive
Explanation: Electric field is a vector quantity, which means it can be represented by a vector arrow: the arrow points in the direction of electric field and its length represents the magnitude at a given location. There are another representation of the electric field called electric field lines, <u>in which the line points away from a positively charged source and towards a negatively charged source</u>. This occurs because it follows a pattern, where the lines points in the direction that a positive test charge would have if it is accelerating on the line.
Analyzing the diagram, it can be observed that the lines are pointing away from both of the charged objects. Therefore, both X and Y are <u>positively charged</u>.