For this question we should apply
a = v^2 - u^2 by t
a = 69 - 0 by 4.5
a = 69 by 4.5
a = 15.33
a = 6.85 m/s^2
If the answer in option is near to answer then , you can mark it as correct.
.:. The acceleration is 6.9 m/s^2
I believe it would best represent Newton’s first law; an object tends to stay at rest and an object tends to stay in motion unless acted upon by an unbalanced force. When the dog stops walking, the doll will continue to go forward because there is no unbalanced force acting in it.
Answer:

Explanation:
<u>Conservation of Momentum
</u>
The total momentum of a system of two particles is

Where m1,m2,v1, and v2 are the respective masses and velocities of the particles at a given time. Then, the two particles collide and change their velocities to v1' and v2'. The final momentum is now

The momentum is conserved if no external forces are acting on the system, thus

Let's put some numbers in the problem and say



120=120
It means that when the particles collide, the first mass returns at 6 m/s and the second continues in the same direction at 28 m/s
Answer:
A ball is thrown straight up with a speed of 30
m/s. What is the maximum height reached by
the ball?