Answer:
The recoil velocity is 0.354 m/s.
Explanation:
Given that,
Mass of hunter = 70 kg
Mass of bullet = 42 g = 0.042 kg
Speed of bullet = 590 m/s
We need to calculate the recoil speed of hunter
Using conservation of momentum

Where,
= mass of hunter
= mass of bullet
u = initial velocity
v = recoil velocity
Put the value in the equation



Hence, The recoil velocity is 0.354 m/s.
A graph of real speed can have a section that's as steep as you want,
but it can never be a perfectly vertical section.
Any vertical line on a graph, even it it's only a tiny tiny section, means
that at that moment in time, the speed had many different values.
It also means that the speed took no time to change from one value to
another, and THAT would mean infinite acceleration.
Answer:
a) v = 6.43 m/s
b) v = 15.8 m/s
Explanation:
Speed of car = 56 km/h
56 km/h = 14.4 m/s
Angle rain makes on the glass to the vertical = 66°
Thus knowing that the opposite side of the angle is the distance moved by the car, and the adjacent side is the distance traveled by the rain in the same time
both of which are directly proportional to their velocities
Then
tan(66°) = 14.44m/s ÷ x
or x = 14.44/tan(66°)
Which is the vertical raindrop velocity of the relative to earth
v = 6.43 m/s vertically towards earth
For v relative to the car is we have vector sum of both velocities
v = √(14.44^2 + 6.43^2) = 15.8 m/s which is the velocity relative to car
= 15.8 m/s
Answer:

Explanation:
Speed of light is the product of its wavelength and frequency, expressed as
S=fw
Where s represent speed, f is frequency while w is wavelength
Making f the subject of the formula then
f=s/w
Substituting 2.99x10^8 m/s for s and 3.012x10^-12 m for w then

Therefore, the frequency equals to 