Answer:
21.59 m/s
Explanation:
recall that one of the equations of motions can be expressed as
v² = u² + 2as
where,
v = final velocity (we are asked to find this)
u = initial velocity = 0m/s (because it says that it starts from rest)
a = acceleration = 3.7m/s²
s = distance travelled = 63 m
simply substitute the known values above into the equation:
v² = u² + 2as
v² = 0² + 2(3.7)(63)
v² = 466.2
v = √466.2
v = 21.59 m/s
<span>d. scientific theories summarize patterns found in nature
Hope this helps!</span>
Mechanical advantage of a machine is the ratio of the output force over the input force or M=Fo/Fi. Since M=1, Fi=Fo, or the input force is equal to the output force. This means that to raise the refrigerator that weighs 900 N, we need the same input force of 900 N, or Fo=Fi=900 N.
See this suggested solution.
1. Let a force F' is the vector sum of the forces P and Q, then it is shown on the attached picture and marked with red color.
2. according to the condition the force F holds the object, then F should have the same length as the force F' and the opposite direction.
3. using the conditions described in 2. the answer is C.
Explanation:
We define force as the product of mass and acceleration.
F = ma
It means that the object has zero net force when it is in rest state or it when it has no acceleration. However in the case of liquids. just like the above mentioned case, the water is at rest but it is still exerting a pressure on the walls of the swimming pool. That pressure exerted by the liquids in their rest state is known as hydro static force.
Given Data:
Width of the pool = w = 50 ft
length of the pool = l= 100 ft
Depth of the shallow end = h(s) = 4 ft
Depth of the deep end = h(d) = 10 ft.
weight density = ρg = 62.5 lb/ft
Solution:
a) Force on a shallow end:



b) Force on deep end:



c) Force on one of the sides:
As it is mentioned in the question that the bottom of the swimming pool is an inclined plane so sum of the forces on the rectangular part and triangular part will give us the force on one of the sides of the pool.
1) Force on the Rectangular part:




2) Force on the triangular part:

here
h = h(d) - h(s)
h = 10-4
h = 6ft



now add both of these forces,
F = 25000lb + 150000lb
F = 175000lb
d) Force on the bottom:


