Answer:
1. Cu
2. Cu
3. 2 electrons.
Explanation:
Step 1:
The equation for the reaction is given below:
3Cu(s) + 8HNO3(aq) -> 2NO(g) 3Cu(NO3)2(aq) + 4H2O(l)
Step 2:
Determination of the change of oxidation number of each element present.
For Cu:
Cu = 0 (ground state)
Cu(NO3)2 = 0
Cu + 2( N + 3O) = 0
Cu + 2(5 + (3 x -2)) =0
Cu + 2 (5 - 6) = 0
Cu + 2(-1) = 0
Cu - 2 = 0
Cu = 2
The oxidation number of Cu changed from 0 to +2
For N:
HNO3 = 0
H + N + 3O = 0
1 + N + (3 x - 2) = 0
1 + N - 6 = 0
N = 6 - 1
N = 5
NO = 0
N - 2 = 0
N = 2
The oxidation number of N changed from +5 to +2
The oxidation number of oxygen and hydrogen remains the same.
Note:
1. The oxidation number of Hydrogen is always +1 except in hydride where it is - 1
2. The oxidation number of oxygen is always - 2 except in peroxide where it is - 1
Step 3:
Answers to the questions given above
From the above illustration,
1. Cu is oxidize because its oxidation number increased from 0 to +2 as it loses electron.
2. Cu is the reducing agent because it reduces the oxidation number of N from +5 to +2.
3. The reducing agent i.e Cu transferred 2 electrons to the oxidising agent HNO3 because its oxidation number increase from 0 to +2 as it loses its electrons. This means that Cu transfer 2 electrons.
The best name for the compound is DINITROGEN TRIOXIDE.
Each chemical compound is always represented by a chemical symbol, which shows the ratio at which each atom of the elements of the compound are combine together and this is often used in naming the compound. Looking at the compound given in the question, the compound is made up of two atoms of nitrogen and three atoms of oxygen and this fact was used in naming the compound. In naming chemical compounds, 'Di' stands for 2 while 'Tri' stands for 3. Since there are two nitrogen and three oxygen atoms in the compound, that was why it was named dinitrogen trioxide.
Answer: Bohr postulated that electronic energy levels are quantized. Secondly, a photon of light of a particular frequency is emitted when electrons move from a higher to a lower energy levels.
Explanation:
The Bohr model of the atom is the immediate predecessor of the wave mechanical model of the atom. The wave mechanical model refined the Bohr's model by treating the electron as a wave having a wave function psi. The wave function describes the identity of the electron. From Heisenberg uncertainty principle, the position of a particle cannot be accurately and precisely measured. Hence the wave mechanical model added that electrons are not localized in orbits according to Bohr's model but the integral of psi squared dx gives the probability of finding the electron within a given space.
C because
Explanation Plato