Answer:
0.54 A
Explanation:
Parameters given:
Number of turns, N = 15
Area of coil, A = 40 cm² = 0.004 m²
Change in magnetic field, ΔB = 5.1 - 1.5 = 3.6 T
Time interval, Δt = 2 secs
Resistance of the coil, R = 0.2 ohms
To get the magnitude of the current, we have to first find the magnitude of the EMF induced in the coil:
|V| = |(-N * ΔB * A) /Δt)
|V| = | (-15 * 3.6 * 0.004) / 2 |
|V| = 0.108 V
According to Ohm's law:
|V| = |I| * R
|I| = |V| / R
|I| = 0.108 / 0.2
|I| = 0.54 A
The magnitude of the current in the coil of wire is 0.54 A
The sample appears to have gone through 3 half-lives
1st half life: 1000 to 500 g
2nd half life: 500 to 250 g
3rd half life: 250 to 125 g
The duration of a half-life, therefore, can be inferred to be 66 ÷ (3) = 22 days.
After a 4th half life, there will be 125÷2= 62.5 g.
At this point, an additional 22 days will have passed, for a total of 88 days.
Answer is C.
Answer:
The acceleration is 1 cm/s^2.
Explanation:
The acceleration is defined as the rate of change of velocity.
Here, initial velocity, u = 3/1 = 3 cm/s
final velocity, v = 4/1 = 4 cm/s
time, t = 1 s
Let the acceleration is a.
Use first equation of motion
v = u + at
4 = 3 + 1 x a
a = 1 cm/s^2