The 3% mass/volume H₂O₂ means 3 g of H₂O₂ in 100 ml of water.
Now, Molarity (M) = No. of moles of H₂O₂ / Volume of solution in liter
No. of moles of H₂O₂ = Mass / Molar mass = 3 g / 34 g/mol = 0.088 mol
So, molarity = 0.088 × 1000 ml / 100 ml = 0.88 M
In case of 2.25 % H₂O₂,
No of moles = 2.25 g / 34 g/mol = 0.066 mol
Molarity = 0.066 mol / 0.100 L = 0.66 M.
Because when you take the sand out it doesn't stay the same shape
<span>Data:
pH = 5.2
[H+] = ?
Knowing that: (</span><span>Equation to find the pH of a solution)</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
<span>
Solving:
</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
![5.2 = - log [H+]](https://tex.z-dn.net/?f=5.2%20%3D%20-%20log%20%5BH%2B%5D)
Knowing that the exponential is the opposite operation of the logarithm, then we have:
![[H+] = 10^{-5.2}](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%2010%5E%7B-5.2%7D)
Answer:
0.00316
Explanation:
You have to use the following equation:
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
You are given the pH and need to find the concentration of H+. Plug in the given components and solve.
![2.5=-log[H^+]\\H^+ = 10^{-2.5}\\H^+=0.00316](https://tex.z-dn.net/?f=2.5%3D-log%5BH%5E%2B%5D%5C%5CH%5E%2B%20%3D%2010%5E%7B-2.5%7D%5C%5CH%5E%2B%3D0.00316)
The concentration of H is 0.00316.