Answer:
0.19m/s²
Explanation:
Initial velocity(u) = 50×1000/60×60
=13.88 m/s
Final velocity(v) = 36.5×1000/60×60
=10.13 m/s
Acceleration(a) = v-u/t
=10.13-13.88/19.5
a= -0.19m/s²
-a = 0.19m/s²
The magnitude of retar dation is 0.19m/s²
The main danger is vehicles making u-turns or pulling out without signalling.
Answer:
a) 0 < r < R: E = 0, R < r < 2R: E = KQ/r^2, r > 2R: E = 2KQ/r^2
b) See the picture
Explanation:
We can use Gauss's law to find the electric field in all the regions:
EA = qen/e0 where qen is the enclosed charge
Remember that the electric field everywhere outside a sphere is:
E(r) = q/(4*pi*eo*r^2) = Kq/r^2
a)
- For 0 < r < R: There is not enclosed charge because all of it remains on the outer layer of the conducting sphere, therefore E = 0 EA = 0/e0 = 0 E = 0
- For R < r < 2R: Here the enclosed charge is equal Q E = Q/(4*pi*eo*r^2) = KQ/r^2
- For r > 2R: Here the enclosed charge is equal 2Q E = Q/(4*pi*eo*r^2) + Q/(4*pi*eo*r^2) = 2Q/(4*pi*eo*r^2) = 2KQ/r^2
b) At the beginning there is no electric field this is why you see a line in zero, In R the electric field is maximum and then it starts to decrease exponentially with the distance and finally in 2R the field increase a little due to the second sphere to then continue decreasing exponentially with the distance
Well the diagram would look like the water cycle I think