Answer:
276.135 J
Explanation:
Given that:
mass of Fe = 30.0 g
initial temperature = 24.5°C
final temperature = 45.0°C
specific heat of Fe = 0.449 J/g°C
We can determine the thermal energy added by using the formula;
Q = mcΔT
Q = 30.0g × 0.449 J/g°C × (45.0 - 24.5)°C
Q = 276.135 J
Answer:
.409 N
Explanation:
For this to balance, the moments around the fulcrum must sum to zero.
On the left you have .21 ( is that down? I will assume it is)
Counterclockwise moments :
.21 * 40 + 1.0 * 20
Clockwise moments :
.5 * 20 + F * 45
these moments must equal each other
.21*40 + 1 *20 = .5 * 20 + F * 45
F = .409 N
This problem involves Newton's universal law of gravitation and the equation to follow would be.
F = GM₁M₂/r²
Given: M₁ = 0.890 Kg; M₂ = 0.890 Kg; F = 8.06 x 10⁻¹¹ N; G = 6.673 X 10⁻¹¹ N m²/Kg²
Solving for distance r = ?
r = √GM₁M₂/F
r = √(6.673 x 10⁻¹¹ N m₂/Kg²)(0.890 Kg)(0.890 Kg)/ 8.06 x 10⁻¹¹ N
r = 0.81 m
Answer: The speed will be 30 m/s .
Explanation:
Given: Initial velocity of the car: u = 0 m/s
Constant Acceleration: a = 5 m/s²
Time: t= 6 seconds
To find: Final velocity(v)
Formula: v = u+at
Substitute values in the formula, we get
v= 0+(5)(6) m/s
⇒ v= 30 m/s
i.e. Final velocity = 30 m/s
Hence, the speed will be 30 m/s .
Answer:
The answer is "Choice C ".
Explanation:
The relationship between the E and V can be defined as follows:

Let,

When E=0

v is a constant value
Therefore, In the electric potential in a region is a constant value then the electric-field must be into zero that is everywhere in the given region, that's why in this question the "choice c" is correct.