Answer:
Explanation:
When a force hits something, an equal amount of force is exerted back on it.
To determine the force that acts on the mass, just multiply the mass by the gravitational field. Using the given data,
F = (2.50 kg)(14 N/kg) = 35 N
Therefore, the force that acts on the mass is equal to 35 N.
Answer:
The distance of m2 from the ceiling is L1 +L2 + m1g/k1 + m2g/k1 + m2g/k2.
See attachment below for full solution
Explanation:
This is so because the the attached mass m1 on the spring causes the first spring to stretch by a distance of m1g/k1 (hookes law). This plus the equilibrium lengtb of the spring gives the position of the mass m1 from the ceiling. The second mass mass m2 causes both springs 1 and 2 to stretch by an amout proportional to its weight just like above. The respective stretchings are m2g/k1 for spring 1 and m2g/k2 for spring 2. These plus the position of m1 and the equilibrium length of spring 2 L2 gives the distance of L2 from the ceiling.
The answer is destructive interference. You have this for both C and D. I suspect one of C or D is supposed to be constructive interference... But destructive interference is the answer
Answer:
i don't have any answer without the options
Explanation:
Where is the pic