Hi there!
(a)
Recall that:

W = Work (J)
F = Force (N)
d = Displacement (m)
Since this is a dot product, we only use the component of force that is IN the direction of the displacement. We can use the horizontal component of the given force to solve for the work.

To the nearest multiple of ten:

(b)
The object is not being displaced vertically. Since the displacement (horizontal) is perpendicular to the force of gravity (vertical), cos(90°) = 0, and there is NO work done by gravity.
Thus:

(c)
Similarly, the normal force is perpendicular to the displacement, so:

(d)
Recall that the force of kinetic friction is given by:

Since the force of friction resists the applied force (assigned the positive direction), the work due to friction is NEGATIVE because energy is being LOST. Thus:

In multiples of ten:

(e)
Simply add up the above values of work to find the net work.

Nearest multiple of ten:

(f)
Similarly, we can use a summation of forces in the HORIZONTAL direction. (cosine of the applied force)



Nearest multiple of ten:

Answer:
you calculate a specific type of run for example 100m and it takes 20 seconds to finish and calculate the time it takes them to finish
hope this helps
have a good day :)
Explanation:
Answer:
Uncorrected values for
For circuit P
R = 2.4 ohm
For circuit Q
R = 2.4 ohm
Corrected values
for circuit P
R = 12 OHM
For circuit Q
R = 2.3 ohm
Explanation:
Given data:
Ammeter resistance 0.10 ohms
Resister resistance 3.0 ohms
Voltmeter read 6 volts
ammeter reads 2.5 amp
UNCORRECTED VALUES FOR
1) circuit P
we know that IR =V

2) circuit Q
R = 2.4 ohm as no potential drop across ammeter
CORRECTED VALUES FOR
1) circuit p
IR = V

R= 12 ohm
2) circuit Q


R = 2.3 ohm
Density <em>ρ</em> is mass <em>m</em> per unit volume <em>v</em>, or
<em>ρ</em> = <em>m</em> / <em>v</em>
Solving for <em>v</em> gives
<em>v</em> = <em>m</em> / <em>ρ</em>
So the given object has a volume of
<em>v</em> = (130 g) / (65 g/cm³) = 2 cm³
Answer:
F₁ = 4,120.2 N
F₂ = 3,924N
Explanation:
1) Balance of angular momentum around the end where F₁ is applied.
F₂ × 0.5m - F₁ × 0 = mass × g × 1m
⇒ F2 × 0.5 m= 20 kg × 9.81 m/s² × 1 m = 1,962 N×m
F₂ = 196.2 Nm / 0.5m = 3,924 N
2) Balance of forces
F₁ - F₂ = mg
F₁ = F₂ + mg = 3,924N + 20kg (9.81 m/s²) = 4,120.2 N